Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (2): 312-322    DOI: 10.11902/1005.4537.2023.186
Current Issue | Archive | Adv Search |
Synergistic Corrosion Inhibition Effect of a Compound Inhibitor for Aluminum
LIU Zebang1, RAN Boyuan2,3, PEI Heng1, LUO Kailin1, ZHAO Zhibin1, HAN Peng1(), QIANG Yujie2,3()
1.School of Chemical & Environmental Engineering, China University of Mining & Technology, Beijing 100083, China
2.National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China
3.Talented Doctoral Workstation of Jixian, Linfen 042200, China
Cite this article: 

LIU Zebang, RAN Boyuan, PEI Heng, LUO Kailin, ZHAO Zhibin, HAN Peng, QIANG Yujie. Synergistic Corrosion Inhibition Effect of a Compound Inhibitor for Aluminum. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 312-322.

Download:  HTML  PDF(14493KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion inhibition behavior of 4-mercaptopyridine (4MP), sodium dodecyl sulfate (SDS), and compound inhibitor 4MP-SDS for aluminum in 3.5%NaCl solution was comparatively investigated via experimental test and digital simulation. The results show that the presence of corrosion inhibitor could effectively reduce the free-corrosion current density. Moreover, the increase dosage of corrosion inhibitor has a positive effect on the enhancing desorption potential of corrosion inhibitor. The corrosion inhibition efficiency of the three inhibitors may be ranked as 4MP + SDS > SDS > 4MP. The mass loss test results show good agreement with the electrochemical test results. After the injection of compound inhibitor, a corrosion inhibitor film can form on the metal surface. Thus, the resistance to the diffusion and migration of corrosive ions increased and the corrosion rate of Al slowed down, correspondingly, the Al surface maintains a good metallic luster and shows the characteristics of a uniform corrosion pattern. In addition, the anti-corrosion mechanism of the compound inhibitor 4MP + SDS was revealed by molecular dynamics (MD) simulation. The compound inhibitor 4MP + SDS showed greater ability to slow down the build-up of interfacial water layers, increase the surface coverage, and the bonding effect is more stable, compared with the presence of a single 4MP or SDS, demonstrating the strong adsorption of the compound inhibitor on Al, while the best anti-corrosion performance.

Key words:  aluminum      corrosion      corrosion inhibitor      synergistic effect      theoretical simulation     
Received:  05 June 2023      32134.14.1005.4537.2023.186
ZTFLH:  TG174  
Fund: Fundamental Research Funds for the Central Universities(2023JCCXJD01);Ministry of Education University-Industry Cooperation Collaborative Education Project(220706429013009);China University of Mining & Technology (Beijing) Student Innovation Training Program(202304050)
Corresponding Authors:  HAN Peng, E-mail: hanpeng972@163.com;
QIANG Yujie, E-mail: qiangyujie@ustb.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.186     OR     https://www.jcscp.org/EN/Y2024/V44/I2/312

Fig.1  Open circuit potentials of Al electrode during immersion in 3.5%NaCl solutions containing different concentrations of 4MP (a), SDS (b) and 4MP + SDS (c) at 25oC
Fig.2  Polarization curves of Al electrode during immersion in 3.5%NaCl solutions containing different concentrations of 4MP (a), SDS (b) and 4MP + SDS (c) at 25oC
InhibitorConcentration
g·L-1
-Ecorr
mV
Icorr
μA·cm-2
ba
mV·dec-1
bc
mV·dec-1
η / %
Inhibitor free-1189.09.7479557.3285.04-
4MP0.0251129.24.0201737.7298.458.76
0.3751126.53.4650245.0387.264.45
0.5001044.32.2682489.8322.876.73
0.6251008.51.4989335.6402.284.62
0.750944.11.3597372.5330.786.05
SDS0.0251040.73.1141236.5599.868.05
0.375974.91.6865102.1377.882.70
0.500967.91.5423263.6432.884.18
0.625941.91.1793180.9434.587.90
0.750918.80.126898.4472.088.44
SDS+4MP0.0251171.11.7146141.5177.682.41
0.3751133.41.0031213.1299.889.71
0.5001043.30.6456142.0149.093.38
0.625848.00.4565136.7152.095.32
0.750986.40.632595.6184.393.51
Table 1  Fitting parameters of polarization curves of Al electrode during immersion in 3.5%NaCl solutions containing different concentrations of 4MP, SDS and 4MP + SDS at 25oC
Fig.3  Nyquist plots of Al electrode during immersion in 3.5%NaCl solutions containing different concentrations of 4MP (a), SDS (b) and 4MP + SDS (c) at 25oC
Fig.4  Equivalent circuit used to fit EIS data
InhibitorConcentration
g·L-1
Cdl
μF·cm-2
Rct
Ω·cm2
η / %
Inhibitor free-57.71930-
4MP0.02553.62104611.09
0.37543.87121323.33
0.50040.86255363.57
0.62537.77469280.18
0.75031.74729787.26
SDS0.02539.37205854.81
0.37535.78523882.25
0.50037.78542082.84
0.62533.16965290.36
0.75031.921099091.53
4MP +0.02548.25461879.86
SDS0.37526.09949790.21
0.5002.7662370096.08
0.6252.7064253097.81
0.7503.7032862096.75
Table 2  Fitting parameters of Nyquist plots of Al electro-de during immersion in 3.5%NaCl solutions containing different concentrations of 4MP, SDS and 4MP + SDS at 25oC
InhibitorAverage corrosion rate / mm·a-1η / %
Inhibitor free17.8999-
4MP11.359636.54
SDS7.779656.54
4MP+SDS0.963894.62
Table 3  Corrosion rates and corrosion inhibition efficiencies of Al metal in 3.5%NaCl solutions without and with different inhibitors (0.625 g/L)
Fig.5  Surface morphologies of Al metal after corrosion in 3.5%NaCl solutions without (a) and with 0.625 g/L SDS (b), 0.625 g/L 4MP (c) and 0.625 g/L 4MP + SDS (d) inhibitors for 240 h
Fig.6  FT-IR spectra of Al metal after immersion in 3.5%NaCl solutions containing 0.625 g/L 4MP (a), 0.625 g/L SDS (b) and 0.625 g/L 4MP + SDS (c)
Fig.7  Criterions of molecular dynamics equilibrium for the solution/corrosion inhibitor/metal interface model system: variations of temperature (a, c, e, g) and energy (b, d, f, h) with time
Fig.8  Calculated structures of corrosion inhibitors adsorbed on Al metal surfaces based on molecular dynamics simulation under the conditions of corrosion inhibitor free (a, b), and SDS (c, d), 4MP (e, f) and 4MP+SDS (g, h) additions (Side view: a, c, e and g; Top view : b, d, f and h)
Fig.9  Adsorption bonding diagrams of corrosion inhibitors and their compounding systems on metal surface: (a) individual SDS, (b) compound SDS, (c) individual 4MP, (d) compound 4MP
Fig.10  Effect of corrosion inhibitor addition on the distribution of water molecules at the metal/corrosion inhibitor/solution interface
1 Ren Y L, Huang C Y. The production technology and the trend of aluminum alloys for automotive body sheet[J]. Light Alloy Fabr. Technol., 2022, 50(5): 1
任月路, 黄程毅. 铝合金汽车板的生产技术及其发展趋势[J]. 轻合金加工技术, 2022, 50(5): 1
2 Chen Z J, Zhou X J, Chen H. Corrosion behavior of riveted pair of 6A01 Al-alloy-/304 stainless steel-plate used for high-speed train[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 507
陈志坚, 周学杰, 陈昊. 高速列车铆接件中6A01铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42: 507
doi: 10.11902/1005.4537.2021.120
3 Liu J C. Alcoa combines 3D printing with hot isostatic pressing technology to improve additive manufacturing performance[J]. Foundry, 2016, 65: 489
刘金城. 美国美铝公司将3D打印与热等静压技术结合提高增材制造效能[J]. 铸造, 2016, 65: 489
4 Li X, Zhang C, Wang J S, et al. Research progress on corrosion behavior and protection technology of magnesium alloys[J]. Aeron. Manuf. Technol., 2021, 64(19): 59
李鑫, 张弛, 王俊升 等. 镁合金腐蚀行为与防护技术研究进展[J]. 航空制造技术, 2021, 64(19): 59
5 Tian W M, Chao B X, Li Z Y, et al. Effects of grain size on passivation of metals-A[J]. Fail. Anal. Prev., 2018, 13: 130
田文明, 巢昺轩, 李智勇 等. 晶粒尺寸影响金属钝化行为的研究进展[J]. 失效分析与预防, 2018, 13: 130
6 Wu J, Luo L, Liu Y, et al. Research progress on corrosion resistance of Mg-Al Magnesium Alloy[J]. Corros. Prot., 2018, 39: 651
吴进, 罗岚, 刘勇 等. Mg-Al系镁合金的耐蚀性能研究进展[J]. 腐蚀与防护, 2018, 39: 651
7 Zhou Y H, Tian X L, Han X J, et al. Research progress of inhibitors for aluminum and its alloys in NaCl solution[J]. Corros. Sci. Prot. Technol., 2010, 22: 52
周育红, 田秀丽, 韩喜江 等. 铝及其合金在NaCl溶液中缓蚀剂的研究进展[J]. 腐蚀科学与防护技术, 2010, 22: 52
8 Xiao H G, Huang W Q, Tang Z Q, et al. Influence of corrosion products of carbon steel on the corrosion of aluminum in SCAL indirect air cooler system[J]. Corros. Prot., 2019, 40: 799
肖海刚, 黄万启, 汤自强 等. SCAL型间冷系统中碳钢腐蚀产物对铝腐蚀行为的影响[J]. 腐蚀与防护, 2019, 40: 799
9 Wu Y H, Luo S X, Gou H. Effects of simulated acid rain on the corrosion behaviors of aluminum in soil[J]. Mater. Rep., 2012, 26(20): 61
伍远辉, 罗宿星, 勾华. 模拟酸雨对铝在土壤中腐蚀行为的影响[J]. 材料导报, 2012, 26(20): 61
10 Yang F, Hu S S. The process of pitting corrosion of aluminum in acid solutions[J]. Educ. Chem., 2011, (12): 73
杨帆, 胡尚生. 铝在酸溶液中的点腐蚀过程[J]. 化学教学, 2011, (12): 73
11 He J, Yu H, Fu Z Y, et al. Effect of water-soluble corrosion inhibitor on corrosion behavior of Q235 pipeline steel for construction[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1041
何静, 于航, 傅梓瑛 等. 水溶性缓蚀剂对建筑管道用Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43: 1041
doi: 10.11902/1005.4537.2022.372
12 Xiao S, Sun Y B, Wang S H, et al. H2S corrosion behavior of L80 steel and performance of H2S corrosion inhibitor[J]. Corros. Prot., 2023, 44(1): 30
肖洒, 孙玉豹, 王少华 等. L80钢的H2S腐蚀行为及H2S缓蚀剂的性能[J]. 腐蚀与防护, 2023, 44(1): 30
13 Kang B S, Qi X, Qi Q Y, et al. Synergistic corrosion inhibition effect of composite corrosion inhibitor on carbonsteel in softened water[J]. Plat. Finish., 2023, 45(3): 1
康保生, 齐心, 齐千一 等. 复合缓蚀剂在软化水中对低碳钢的协同缓蚀作用[J]. 电镀与精饰, 2023, 45(3): 1
14 Zhang F R Z, Zhang Y X, Zhang J X, et al. Progress on high-temperature (90~180 ℃) corrosion systems for oilfield acidizing[J]. Oilfield Chem., 2023, 40: 159
张丰润泽, 张艺夕, 郑憬希 等. 油田酸化用高温(90~180℃)缓蚀体系的研究现状[J]. 油田化学, 2023, 40: 159
15 Chen J Q, Hou D L, Xiao H, et al. Corrosion inhibition on carbon steel in acidic solution by carbon dots prepared from waste Longan shells[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 629
陈佳起, 侯道林, 肖晗 等. 酸性介质中桂圆壳碳点对碳钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2022, 42: 629
doi: 10.11902/1005.4537.2021.214
16 Zhu H L, Lu X M, Li X F, et al. Synthesis, corrosion inhibition and bactericidal performance of an ammonium salt surfactant containing thiadiazole[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 51
朱海林, 陆小猛, 李晓芬 等. 含噻二唑季铵盐表面活性剂的合成及缓蚀杀菌性能研究[J]. 中国腐蚀与防护学报, 2022, 42: 51
doi: 10.11902/1005.4537.2021.082
17 Huang M, Wang L Z, Ma X Q, et al. Synergistic inhibition effect of walnut green husk extract and Nd(NO3)3 on Aluminum in HCl solution[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 471
黄苗, 王丽姿, 马晓青 等. 核桃青皮提取物与Nd(NO3)3对Al在HCl溶液中的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2023, 43: 471
doi: 10.11902/1005.4537.2022.157
18 Li X H, Xu X, Lei R, et al. Synergistic inhibition effect of walnut green husk extract complex inhibitors on steel in phosphoric acid[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 358
李向红, 徐昕, 雷然 等. 磷酸中核桃青皮复配缓蚀剂对冷轧钢的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2022, 42: 358
doi: 10.11902/1005.4537.2021.160
19 Chang J Y, Lu Y, Zhao J M. Corrosion inhibition of carbon steel by the combination of sodium gluconate and dimethyl aminopropyl methacrylamide[J]. J. Beijing Univ. Chem. Technol. Nat. Sci. Ed., 2021, 48(4): 33
常佳宇, 陆原, 赵景茂. 葡萄糖酸钠与二甲氨基丙基甲基丙烯酰胺复配对碳钢缓蚀性能的影响[J]. 北京化工大学学报(自然科学版), 2021, 48(4): 33
doi: 10.13543/j.bhxbzr.2021.04.004
20 Cheng Z J, Duan L D, Chi S, et al. Inhibition effect of quaternary composite corrosion inhibitor on carbon steel in neutral NaCl solution[J]. Corros. Prot., 2021, 42(1): 7
程正骏, 段立东, 池伸 等. 四元复合型缓蚀剂在中性NaCl溶液中对碳钢的缓蚀作用[J]. 腐蚀与防护, 2021, 42(1): 7
[1] LIU Guo. Discussion on DC Voltage Gradient (DCVG) Measurement and %IR Calculation of Buried Coating Pipeline[J]. 中国腐蚀与防护学报, 2024, 44(2): 512-518.
[2] KE Nan, NI Yingying, HE Jiaqi, LIU Haixian, JIN Zhengyu, LIU Hongwei. Research Progress of Metal Corrosion Caused by Extracellular Polymeric Substances of Microorganisms[J]. 中国腐蚀与防护学报, 2024, 44(2): 278-294.
[3] HAN Dongxiao, JI Wenhui, WANG Tong, WANG Wei. Water Penetration Behavior of Epoxy Coating Based on Distribution of Relaxation Time and Finite Element Simulation[J]. 中国腐蚀与防护学报, 2024, 44(2): 489-496.
[4] ZHOU Lanxin, ZHANG Liping, TANG Yan, CHEN Keyu, ZHOU Jianjun, SHI Chao, SHAO Yawei, LIU Guangming. Preparation of Zinc Phytate and Its Effect on Corrosion Behavior of Carbon Steel[J]. 中国腐蚀与防护学报, 2024, 44(2): 396-404.
[5] ZHOU Wenbin, LI Mengran, ZHOU Xin, SUN Haijing, SUN Jie. Oil Soluble Mannich Base Corrosion Inhibitor for Corrosion Inhibition of Copper in Transformer Oil[J]. 中国腐蚀与防护学报, 2024, 44(2): 453-461.
[6] DENG Zhibin, HU Xiao, LIU Yingyan, YUE Hang, ZHANG Qian, TANG Haiping, LU Rui. Effect of Magnetic Field on Corrosion Behavior of L360 Pipeline Steel and Welded Joints in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(2): 471-479.
[7] ZHANG Yunjun, JIANG Youwei, ZHANG Zhongyi, LV Naixin, CHEN Junwei, LIAN Guofeng. Initial Corrosion Behavior of 3Cr Alloy Steel in Urea Assisted Heavy Oil Steam Huff and Puff Environments[J]. 中国腐蚀与防护学报, 2024, 44(2): 480-488.
[8] LONG Mengxiang, FU Guicui, WAN Bo, ZHANG Zhongqing. Corrosion Area Identification of Sheet Metal Based on K-means++ Clustering Algorithm and SSIM Index[J]. 中国腐蚀与防护学报, 2024, 44(2): 437-444.
[9] LI Wenjie, CHE Xiaoyu, TANG Yongcun, LIU Guangming, TIAN Wenming, HE Hualin, LIU Chenhui. Effect of Plastic Deformation Processing on Corrosion Behavior of Pure Zinc in a Leaching Solution of Soil at Tianjin[J]. 中国腐蚀与防护学报, 2024, 44(2): 497-504.
[10] SI Weiting, ZHANG Jihao, GAO Rongjie. Preparation of Superamphiphobic Surface on AZ31B Magnesium Alloy and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2024, 44(2): 381-388.
[11] SHI Chao, LI Jiahao, WANG Rongxiang, ZHANG Bo, ZHOU Lanxin, LIU Guangming, SHAO Yawei. Effect of Different Bias Voltages on Anti-corrosion Properties of Multi-arc Ion Plated Al-coatings on 45# Carbon Steel[J]. 中国腐蚀与防护学报, 2024, 44(2): 323-334.
[12] WANG Zhihui, WU Lei, JIANG Yishan, ZHANG Xian, WAN Xiangliang, LI Guangqiang, WU Kaiming. Effect of Deformation Strengthening and Phase Reversion Grain Refinement Strengthening on Corrosion Resistance of Fe-18Cr-8Ni Steel[J]. 中国腐蚀与防护学报, 2024, 44(2): 429-436.
[13] GUO Shiwen, WU Haozhi, DONG Shaohua, CHEN Lin, CHENG Frank. Simulation of Hydrogen Distribution in Pipeline with Double Corrosion Defects[J]. 中国腐蚀与防护学报, 2024, 44(2): 335-344.
[14] LI Tingyu, WEI Jie, CHEN Nan, WAN Ye, DONG Junhua. Corrosion Performance of Electrochemical Sensors for Atmospheric Environments[J]. 中国腐蚀与防护学报, 2024, 44(2): 365-371.
[15] PEI Yingying, GUAN Fang, DONG Xucheng, ZHANG Ruiyong, DUAN Jizhou, HOU Baorong. Effect of Desulfovibrio Bizertensis SY-1 on Corrosive Behavior of Metal Materials Under Cathodic Polarization[J]. 中国腐蚀与防护学报, 2024, 44(2): 345-354.
No Suggested Reading articles found!