Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (3): 619-629    DOI: 10.11902/1005.4537.2022.214
Current Issue | Archive | Adv Search |
Corrosion Inhibition of Navel Orange Peel Extract to Stainless Steel in Acidic Medium
ZHOU Kun1, LIU Xinhua2(), LIU Shuai2
1.Hebei Chemical & Pharmaceutical College, Shijiazhuang 050026, China
2.Department of Chemistry, Tangshan Normal University, Tangshan 063000, China
Download:  HTML  PDF(6149KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

To promote the rapid development of green plant extract inhibitor, navel orange peel extract (NOPE) was obtained by a simple ethanol-acetone reflux method, which then was assessed as inhibitor for 316L steel in hydrochloric acid medium. The main components of navel orange peel extract (NOPE) and its stability in hydrochloric acid were confirmed by infrared spectroscopy (FTIR) and ultraviolet spectroscopy (UV). The corrosion inhibition performance of NOPE to 316L steel in 0.5 mol/L HCl solution was investigated using mass loss method, dynamic potential polarization method (PDP), linear polarization method (LPR) and electrochemical impedance spectroscopy (EIS). Their adsorption properties were calculated with items of ΔGads0, ΔHads0 and ΔSads0. The results show that with the increase of the concentration of NOPE, the steel corrosion rate is reduced, the anode current is reduced and the active corrosion site is blocked, so the inhibition efficiency is improved. When the concentration of NOPE was 0.5 g/L, the maximum corrosion inhibition efficiency was 90.5% (masslessness method) and 87.3% (electrochemical method) respectively. Compared with the blank system, the thermodynamic activation parameter (activation energy) Ea significantly increased in the system with NOPE, and the difference of (Ea-ΔHa0) was about equal to the average value of RT (2.64 kJ/mol). Therefore, it can be inferred that the corrosion process was a single molecule reaction. The adsorption process on the steel surface was fitted by Langmuir isotherm, which further proved that the adsorption was monolayer adsorption. The better corrosion inhibition performance of NOPE for L316 steel in 0.5 mol/L HCl solution system can also be proved by the observation and detection with scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). In sum, the NOPE is a green inhibitor with a good application prospect in the field of pickling and can provide certain guidance for the development of plant extract inhibitor.

Key words:  navel orange peel extract      corrosion inhibitor      polarization      impedance      surface analysis     
Received:  29 June 2022      32134.14.1005.4537.2022.214
ZTFLH:  TG174  
Fund: Natural Science Foundation of Hebei Province(D2022105004);Fund of Tangshan Normal University(2022C42)
Corresponding Authors:  LIU Xinhua, E-mail: hualiyiwang@163.com

Cite this article: 

ZHOU Kun, LIU Xinhua, LIU Shuai. Corrosion Inhibition of Navel Orange Peel Extract to Stainless Steel in Acidic Medium. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 619-629.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.214     OR     https://www.jcscp.org/EN/Y2023/V43/I3/619

Fig.1  FTIR diagram (a) of NOPE and UV diagram (b) of NOPE without and with hydrochloric acid medium
Fig.2  Structural formula of hesperidin (a) and flavonoid (b)
T / KNOPE / mg·L-1Vi / g·cm-2·h-1ƞi / %
30307.02×10-4-
303303.18×10-454.73
303502.66×10--462.04
3031001.61×10-477.10
3032001.46×10-479.17
3033008.82×10-587.44
3035006.68×10-590.48
3135003.12×10-476.78
3235008.26×10-470.12
3335002.21×10-360.52
Table 1  Calculated values of Vi and ƞi by weight-loss method
Fig.3  Arrhenius (a) and transition-state (b) plots for dissolution reactions of 316L steel in 0.5 mol/L HCl solutions without and with NOPE
ContentCinh / mg·h-1Amg·h-1·cm-2EakJ·mol-1ΔHa0kJ·mol-1ΔSa0J·mol-1·K-1
07.56×10658.3055.66-139.35
303.89×10870.1867.54-89.34
501.34×10973.7971.15-79.07
1001.98×101081.5278.88-56.68
2002.81×101082.7580.11-53.78
3005.47×101191.4088.76-29.07
5003.32×101296.5493.90-14.08
Table 2  Thermodynamic activation parameters for 316L steel 0.5 mol/L HCl solutions without and with NOPE
Fig.4  Langmuir isotherm for NOPE adsorption on 316L steel in 0.5 mol/L HCl solution
T / KKads / L·g-1R2ΔGads0 / kJ·mol-1
30335.970.9987-26.43
31325.380.9977-26.39
32318.380.9937-26.37
33314.310.9958-26.49
Table 3  Thermodynamic parameters for adsorption of NOPE on 316L steel in 0.5 mol/L HCl solution at different temperatures
Fig.5  lnKads vs. T-1 plot for adsorption of NOPE on 316L steel in 0.5 mol/L HCl solution
Fig.6  EOCP-t curves of 316L steel in 0.5 mol/L HCl solutions with various concentrations of NOPE
Cinh / mg·L-1Ecorr / mVIcorr / mA·cm-2βa / mV·dec-1βc / mV·dec-1ηPDP / %Rp / Ω·cm²ηLPR / %
0-8710.44146123-42.70-
30-8500.2168.510751.3693.2654.21
50-8410.1864.512258.86115.5563.04
100-8360.1049.810776.57159.5173.23
200-8260.0946.711479.43180.8676.39
300-8180.0636.511485.25224.8281.01
500-8080.0532.812188.82335.9887.29
Table 4  Potentiodynamic polarization and linear polarization data of 316L steel in 0.5 mol/L HCl solutions with different concentrations of NOPE
Fig.7  Potentiodynamic polarization curves of 316L steel in 0.5 mol/L HCl solutions with different concentrations of NOPE
Fig.8  Schematic diagram of blocking active sites of NOPE
Fig.9  Nyquist (a) and Bode (b) diagrams of 316L steel in 0.5 mol/L HCl solutions with different concen-trations of NOPE, and corresponding equivalent circuit (c)
Cinh / mg·L-1Rs / Ω·cm2Rc / Ω·cm2Cd / μf·cm-2CPEχ2η / %
Y0 / μΩ-1·s n ·cm-2n
00.5172.22410.13477.360.92010.003446-
300.53151.03252.55297.600.92240.00416052.18
500.44211.01257.27299.700.91280.00383265.77
1000.46266.27289.79303.920.91890.00410972.86
2000.41282.91277.68305.980.90660.00461074.47
3000.45361.10320.29308.140.91220.00326080.00
5000.47571.48137.47224.620.92600.00150587.36
Table 5  Fitting parameters of EIS of 316L steel in 0.5 mol/L HCl solutions with different concentrations of NOPE
Fig.10  SEM surface morphologies (a1-c1) and EDS results (a2-c2) of 316L steel: (a1, a2) New, (b1, b2) Blank, (c1, c2) NOPE
Fig.11  Proposed corrosion inhibition mechanism for 316L steel in 0.5 mol/L HCl solution containing NOPE
Extract raw materialSteelHCl / mol·L-1Conc.ηmax / %Ref.
Winged beanReinforced steel0.51 g·L-195[36]
Lychee fruitMild steel0.50.7 g·L-193.4[37]
Robinia pseudoacacia leavesMild steel0.52 g·L-192.0[38]
Akebia trifoliate koiaz peelsMild steel10.8 g·L-187.6[18]
Mimosa pudica leavesMild steel11 g·L-177.3[39]
Lavandula maireiMild steel10.4 g·L-192.0[40]
Garlic3040.58 cc·L-183.9[41]
Thymus vulgaris plant leaves30412%62.2[42]
Spinach316L0.50.590.5NOPE
Table 6  Comparison of extract corrosion inhibitors for steels in HCl solution
1 Yang X Y, Yang Y T, Lu X P, et al. Research progress of corrosion inhibitor for Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 435
杨欣宇, 杨云天, 卢小鹏 等. 镁合金缓蚀剂研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 435
doi: 10.11902/1005.4537.2021.295
2 da Silva M V L, de Britto Policarpi E, Spinelli A. Syzygium cumini leaf extract as an eco-friendly corrosion inhibitor for carbon steel in acidic medium [J]. J. Taiwan Inst. Chem. Eng., 2021, 129: 342
doi: 10.1016/j.jtice.2021.09.026
3 Fernandes C M, Alvarez L X, dos Santos N E, et al. Green synthesis of 1-benzyl-4-phenyl-1H-1, 2, 3-triazole, its application as corrosion inhibitor for mild steel in acidic medium and new approach of classical electrochemical analyses [J]. Corros. Sci., 2019, 149: 185
doi: 10.1016/j.corsci.2019.01.019
4 Fernandes C M, da S Ferreira Fagundes T, dos Santos N E, et al. Ircinia strobilina crude extract as corrosion inhibitor for mild steel in acid medium [J]. Electrochim. Acta, 2019, 312: 137
doi: 10.1016/j.electacta.2019.04.148
5 Tan B C, Zhang S T, Li W P, et al. Food spices 2, 5-dihydroxy-1, 4-dithiane as an eco-friendly corrosion inhibitor for X70 steel in 0.5 mol/L H2SO4 Solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 469
谭伯川, 张胜涛, 李文坡 等. 食用香料1, 4-二硫-2, 5-二醇环保型缓蚀剂对X70钢在0.5 mol/L H2SO4溶液中的缓蚀性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 469
doi: 10.11902/1005.4537.2020.100
6 Tan B C, Zhang S T, Qiang Y J, et al. Experimental and theoretical studies on the inhibition properties of three diphenyl disulfide derivatives on copper corrosion in acid medium [J]. J. Mol. Liq., 2020, 298: 111975
doi: 10.1016/j.molliq.2019.111975
7 Tan B C, Zhang S T, Liu H Y, et al. Corrosion inhibition of X65 steel in sulfuric acid by two food flavorants 2-isobutylthiazole and 1-(1, 3-Thiazol-2-yl) ethanone as the green environmental corrosion inhibitors: Combination of experimental and theoretical researches [J]. J. Colloid Interface Sci., 2019, 538: 519
doi: 10.1016/j.jcis.2018.12.020
8 Chung I M, Malathy R, Priyadharshini R, et al. Inhibition of mild steel corrosion using Magnolia kobus extract in sulphuric acid medium [J]. Mater. Today Commun., 2020, 25: 101687
9 Raja P B, Sethuraman M G. Natural products as corrosion inhibitor for metals in corrosive media-A review [J]. Mater. Lett., 2008, 62: 113
doi: 10.1016/j.matlet.2007.04.079
10 de Souza F S, Spinelli A. Caffeic acid as a green corrosion inhibitor for mild steel [J]. Corros. Sci., 2009, 51: 642
doi: 10.1016/j.corsci.2008.12.013
11 Obot I B, Madhankumar A. Enhanced corrosion inhibition effect of tannic acid in the presence of gallic acid at mild steel/HCl acid solution interface [J]. J. Ind. Eng. Chem., 2015, 25: 105
doi: 10.1016/j.jiec.2014.10.019
12 Ikeuba I, Ita B I, Okafor P C, et al. Green corrosion inhibitors for mild steel in H2SO4 solution: Comparative study of flavonoids extracted from gongronema latifoliunm with crude the extract [J]. Prot. Met. Phys. Chem. Surf., 2015, 51: 1043
doi: 10.1134/S2070205115060118
13 Odewunmi N A, Umoren S A, Gasem Z M. Watermelon waste products as green corrosion inhibitors for mild steel in HCl solution [J]. J. Environ. Chem. Eng., 2015, 3: 286
doi: 10.1016/j.jece.2014.10.014
14 Grassino A N, Halambek J, Djaković S, et al. Utilization of tomato peel waste from canning factory as a potential source for pectin production and application as tin corrosion inhibitor [J]. Food Hydrocoll., 2016, 52: 265
doi: 10.1016/j.foodhyd.2015.06.020
15 da Rocha J C, Gomes J A C P, D'Elia E, et al. Grape pomace extracts as green corrosion inhibitors for carbon steel in hydrochloric acid solutions [J]. Int. J. Electrochem. Sci., 2012, 7: 11941
16 Singh M R, Gupta P, Gupta K. The litchi (Litchi Chinensis) peels extract as a potential green inhibitor in prevention of corrosion of mild steel in 0.5M H2SO4 solution [J]. Arab. J. Chem., 2019, 12: 1035
doi: 10.1016/j.arabjc.2015.01.002
17 Loto R T, Mbah E H, Ugada J I. Corrosion inhibition effect of citrus sinensis essential oil extract on plain carbon steel in dilute acid media [J]. South Afr. J. Chem. Eng., 2021, 35: 159
18 Zhang M Q, Guo L, Zhu M Y, et al. Akebia trifoliate koiaz peels extract as environmentally benign corrosion inhibitor for mild steel in HCl solutions: Integrated experimental and theoretical investigations [J]. J. Ind. Eng. Chem., 2021, 101: 227
doi: 10.1016/j.jiec.2021.06.009
19 Alrefaee S H, Rhee K Y, Verma C, et al. Challenges and advantages of using plant extract as inhibitors in modern corrosion inhibition systems: Recent advancements [J]. J. Mol. Liq., 2021, 321: 114666
doi: 10.1016/j.molliq.2020.114666
20 Saxena A, Thakur K K, Bhardwaj N. Electrochemical studies and surface examination of low carbon steel by applying the extract of Musa acuminata [J]. Surf. Interfaces, 2020, 18: 100436
21 Odewunmi N A, Umoren S A, Gasem Z M. Utilization of watermelon rind extract as a green corrosion inhibitor for mild steel in acidic media [J]. J. Ind. Eng. Chem., 2015, 21: 239
22 Senthilvadivu1 B, Aswini V, Kumar K S. Anti-corrosive behavior of ethanolic extract of banana peel against acidic media and their thermodynamic studies [J]. Inter. J. Sci. Res., 2017, 6: 1762
23 Nagarajaiah S B, Prakash J. Chemical composition and antioxidant potential of peels from three varieties of banana [J]. As. J. Food Ag-Ind., 2011, 4: 31
24 Wang L Z, Huang M, Li X H. Synergistic inhibition effect of walnut green husk extract and potassium iodide on corrosion of steel in citric acid solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 819
王丽姿, 黄 苗, 李向红. 核桃青皮提取物与碘化钾对钢在柠檬酸中的缓蚀协同效应 [J]. 中国腐蚀与防护学报, 2021, 41: 819
doi: 10.11902/1005.4537.2020.218
25 Zhang F, Xu X, Lei R, et al. Inhibition effect of orange peel extract on aluminum in hydrochloric acid solution [J]. J. Southwest For. Univ., 2022, 42: 103
张 富, 徐 昕, 雷 然 等. 橙子皮提取物对HCl溶液中铝的缓蚀作用研究 [J]. 西南林业大学学报(自然科学), 2022, 42: 103
26 Li X H, Deng S D, Xie X G, et al. Inhibition effect of bamboo leaves' extract on steel and zinc in citric acid solution [J]. Corros. Sci., 2014, 87: 15
doi: 10.1016/j.corsci.2014.05.013
27 Wang X, Ren S F, Zhang D X, et al. Inhibition effect of soybean meal extract on corrosion of Q235 steel in hydrochloric acid medium [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 267
王 霞, 任帅飞, 张代雄 等. 豆粕提取物在盐酸中对Q235钢的缓蚀性能 [J]. 中国腐蚀与防护学报, 2019, 39: 267
28 Zhang S H, Liu S J, Zhu Z X, et al. Research on the extraction condition and corrosion inhibition performance of actire principle in pomelo peel [J]. Fine Speci. Chem., 2017, 25(1): 27
张世红, 刘绍君, 朱忠祥 等. 柚子皮有效成分的提取及其缓蚀性能研究 [J]. 精细与专用化学品, 2017, 25(1): 27
29 Ituen E B, Solomon M M, Umoren S A, et al. Corrosion inhibition by amitriptyline and amitriptyline based formulations for steels in simulated pickling and acidizing media [J]. J. Pet. Sci. Eng., 2019, 174: 984
doi: 10.1016/j.petrol.2018.12.011
30 Hamilton-Amachree A, Iroha N B. Corrosion inhibition of API 5L X80 pipeline steel in acidic environment using aqueous extract of Thevetia peruviana [J]. Chem. Int., 2020, 6: 110
31 Mobin M, Basik M, El Aoufir Y. Corrosion mitigation of mild steel in acidic medium using Lagerstroemia speciosa leaf extract: A combined experimental and theoretical approach [J]. J. Mol. Liq., 2019, 286: 110890
doi: 10.1016/j.molliq.2019.110890
32 Jmiai A, Tara A, El Issami S, et al. A new trend in corrosion protection of copper in acidic medium by using Jujube shell extract as an effective green and environmentally safe corrosion inhibitor: Experimental, quantum chemistry approach and Monte Carlo simulation study [J]. J. Mol. Liq., 2021, 322: 114509
doi: 10.1016/j.molliq.2020.114509
33 de Britto Policarpi E, Spinelli A. Application of Hymenaea stigonocarpa fruit shell extract as eco-friendly corrosion inhibitor for steel in sulfuric acid [J]. J Taiwan Inst. Chem. Eng., 2020, 116: 215
doi: 10.1016/j.jtice.2020.10.024
34 Liu X H, Rui Y L, Tian H J. Studies on the inhibition Mechanism of Amino acid inhibiters in the process of Acid Cleaning [J]. Clean. World, 2008, 24(7): 23
柳鑫华, 芮玉兰, 田惠娟. 酸洗过程中氨基酸类缓蚀剂缓蚀机理研究进展 [J]. 清洗世界, 2008, 24(7): 23
35 Aadad H E, Galai M, Ouakki M, et al. Improvement of the corrosion resistance of mild steel in sulfuric acid by new organic-inorganic hybrids of Benzimidazole-Pyrophosphate: Facile synthesis, characterization, experimental and theoretical calculations (DFT and MC) [J]. Surf. Interfaces, 2021, 24: 101084
36 Zakaria F A, Hamidon T S, Hussin M H. Applicability of winged bean extracts as organic corrosion inhibitors for reinforced steel in 0.5 M HCl electrolyte [J]. J. Indian Chem. Soc., 2022, 99: 100329
doi: 10.1016/j.jics.2021.100329
37 Liao L L, Mo S, Luo H Q, et al. Corrosion protection for mild steel by extract from the waste of lychee fruit in HCl solution: Experimental and theoretical studies [J]. J. Colloid Interface Sci., 2018, 520: 41
doi: 10.1016/j.jcis.2018.02.071
38 Yüce A O. Corrosion inhibition behavior of Robinia pseudoacacia leaves extract as a eco-friendly inhibitor on mild steel in acidic media [J]. Met. Mater. Int., 2020, 26: 456
doi: 10.1007/s12540-019-00509-7
39 Agbaffa E B, Akintemi E O, Uduak E A, et al. Corrosion inhibition potential of the methanolic crude extract of Mimosa pudica leaves for mild steel in 1 M hydrochloric acid solution by weight loss method [J]. Sci. Lett., 2021, 15: 23
40 Berrissoul A, Ouarhach A, Benhiba F, et al. Evaluation of Lavandula mairei extract as green inhibitor for mild steel corrosion in 1 M HCl solution. Experimental and theoretical approach [J]. J. Mol. Liq., 2020, 313: 113493
doi: 10.1016/j.molliq.2020.113493
41 Asfia M P, Rezaei M, Bahlakeh G. Corrosion prevention of AISI 304 stainless steel in hydrochloric acid medium using garlic extract as a green corrosion inhibitor: Electrochemical and theoretical studies [J]. J. Mol. Liq., 2020, 315: 113679
doi: 10.1016/j.molliq.2020.113679
42 Ehsani A, Mahjani M G, Hosseini M, et al. Evaluation of Thymus vulgaris plant extract as an eco-friendly corrosion inhibitor for stainless steel 304 in acidic solution by means of electrochemical impedance spectroscopy, electrochemical noise analysis and density functional theory [J]. J. Colloid Interface Sci., 2017, 490: 444
doi: 10.1016/j.jcis.2016.11.048
[1] LI Chunlin, SHI Hongwei, LIANG Guoping, LI Li, WANG Hao, WANG Wei, LIU Fuchun, HAN En-Hou. Corrosion Resistance and Aging Mechanism of Polyurethane Topcoat for High-speed Train[J]. 中国腐蚀与防护学报, 2023, 43(6): 1383-1391.
[2] LYU Zhengping, LI Yuan, LIU Xiaohang, CUI Zhongyu, CUI Hongzhi, WANG Xin, PANG Kun, LI Yizhou. Synergistic Inhibition Effect of Thiourea and Sodium Nitrate on Crevice Corrosion of 7075 Al-alloy in Acidic Sodium Chloride Solution[J]. 中国腐蚀与防护学报, 2023, 43(6): 1367-1374.
[3] DONG Hongmei, LI Baoyi, RAN Boyuan, WANG Qi, NIU Yulan, DING Lifeng, QIANG Yujie. Corrosion Inhibition Mechanism of the Eco-friendly Corrosion Inhibitor Linagliptin on Copper in Sulfuric Acid[J]. 中国腐蚀与防护学报, 2023, 43(5): 1031-1040.
[4] HE Jing, YU Hang, FU Ziying, YUE Penghui. Effect of Water-soluble Corrosion Inhibitor on Corrosion Behavior of Q235 Pipeline Steel for Construction[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[5] CHEN Xiaohan, BAI Yang, WANG Zhichao, CHEN Congzong, ZHANG Yong, CUI Xianlin, ZUO Juanjuan, WANG Tongliang. Preparation and Corrosion Resistance of Surface Tolerant Epoxy Anti-corrosion Primer[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[6] ZHOU Hao, YOU Shijie, WANG Shengli. Corrosion Behavior and Corrosion Inhibitor for Copper Artifacts in CO2 Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1049-1056.
[7] HU Jiezhen, SHANGGUAN Juyu, DENG Peichang, FENG Qilan, WANG Gui, WANG Peilin. Effect of Barnacle Adhesion on Corrosion Behavior of Q235 Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1145-1150.
[8] DENG Chengman, LIU Zhe, XIA Da-Hai, HU Wenbin. Localized Corrosion Mechanism of 5083-H111 Al Alloy in Simulated Dynamic Seawater Zone[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
[9] LIU Ming, WANG Jie, ZHU Chunhui, ZHANG Yanxiao. Electrochemical Corrosion Behavior of 3D-printed NiTi Shape Memory Alloy in a Simulated Oral Environment[J]. 中国腐蚀与防护学报, 2023, 43(4): 781-786.
[10] HUANG Miao, WANG Lizi, MA Xiaoqing, LI Xianghong. Synergistic Inhibition Effect of Walnut Green Husk Extract and Nd(NO3)3 on Aluminum in HCl Solution[J]. 中国腐蚀与防护学报, 2023, 43(3): 471-480.
[11] YUAN Shicheng, WU Yanfeng, XU Changhui, WANG Xingqi, LENG Zhe, YANG Yange. Influence of Polyhydroxy Hyperdispersant on Anti-corrosion Property of Waterborne Epoxy Coatings[J]. 中国腐蚀与防护学报, 2023, 43(2): 289-300.
[12] WANG Tong, WANG Wei. Distribution of Relaxation Time of Polydimethylsiloxane Coatings During Self-healing Process[J]. 中国腐蚀与防护学报, 2023, 43(2): 337-344.
[13] MAO Yingchang, ZHU Yu, SUN Shengkai, QIN Zhenbo, XIA Da-Hai, HU Wenbin. Localized Corrosion of 5083 Al-alloy in Simulated Marine Splash Zone[J]. 中国腐蚀与防护学报, 2023, 43(1): 47-54.
[14] WU Hao, DENG Shuduan, LI Xianghong. Synergistic Inhibition Effect of Cuscuta Chinensis Lam Extract and Potassium Iodide on Cold Rolled Steel in Hydrochloric Acid[J]. 中国腐蚀与防护学报, 2023, 43(1): 77-86.
[15] ZHAO Yanliang, ZHAO Jingmao. Research Progress on Protection and Self-healing Performance of Layered Double Hydroxides Coatings on Mg-alloy[J]. 中国腐蚀与防护学报, 2023, 43(1): 1-5.
No Suggested Reading articles found!