Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (6): 903-912    DOI: 10.11902/1005.4537.2021.296
Current Issue | Archive | Adv Search |
Preparation and Corrosion Inhibition of Super Hydrophobic Adsorption Film of Lotus Leaf Extract on Mild Steel
LUO Weiping1, LUO Xue1, SHI Yueting1, WANG Xinchao1,2, ZHANG Shengtao1, GAO Fang1(), LI Hongru1
1. College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
2. College of Pharmacy, Heze University, Heze 274015, China
Cite this article: 

LUO Weiping, LUO Xue, SHI Yueting, WANG Xinchao, ZHANG Shengtao, GAO Fang, LI Hongru. Preparation and Corrosion Inhibition of Super Hydrophobic Adsorption Film of Lotus Leaf Extract on Mild Steel. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 903-912.

Download:  HTML  PDF(5854KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to search for new green and low-cost organic corrosion inhibitors, the fresh lotus leave was selected as raw material, and then lotus leaf extract (LLE) was obtained by simple ethanol reflux extraction. The LLE could produce orderly aggregation material in a mixture of THF/HCl (tetrahydrofuran/HCl) solution (1.0 mol/L HCl solution) at room temperature. The results of Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) showed that the LLE underwent chemisorption on the surface of Q235 steel, and further the LLE could be adsorbed on the surface of mild steel, which formed super hydrophobic organic adsorption film. Electrochemical test results showed that lotus leaf extract had good corrosion inhibition performance for carbon steel in HCl solution. The maximal corrosion inhibition efficiency of LLE reached 93.14% for Q235 steel in HCl solution of 0.4 g/L.

Key words:  lotus leaf extract      carbon steel      corrosion inhibitor      super hydrophobic adsorption layer     
Received:  21 October 2021     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(21878029);National Natural Science Foundation of China(21676035);Chongqing Science and Technology Commission(cstc2018jcyjAX0668);Natural Science Foundation of Shandong Province(ZR2020QB180)
About author:  GAO Fang, E-mail: fanggao1971@gmail.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.296     OR     https://www.jcscp.org/EN/Y2022/V42/I6/903

Fig.1  SEM images of LLE aggregates formed after aggregation in THF/HCl solution containing 0.4 g/L LLE for 30 min (a), 2 h (b), 6 h (c), 10 h (d) and 48 h (e)
Fig.2  SEM images of LLE aggregates formed after 10 h aggregation in the THF/HCl mixed solutions containing 0.1 (a), 0.2 (b), 0.3 (c), 0.4 (d) and 0.5 g/L (e) LLE
Fig.3  FT-IR spectrum of original LLE powders (a) and ATR-IR of LLE aggregates adsorbed on Q235 steel (b)
Fig.4  XPS fine spectra of Fe 2p3/2 on Q235 steel samples without (a) and with (b) LLE-aggregation treatment after immersion in HCl solution
SampleChemistry stateBinging energy / eVFWHMs / eV
Cu-BareFe2O3/Fe3O4710.382.02
FeOOH711.662.02
FeCl3712.812.43
Cu-LLE aggregatesFe0707.351.75
Fe2O3/Fe3O4709.302.10
FeOOH711.202.25
Table 1  De-convolution parameters of XPS fine spectra of Fe 2p3/2 on Q235 steel samples without and LLE aggregation treatment
Fig.5  XPS fine spectra of C 1s on the surfaces of Q235 steel samples without (a) and with (b) LLE aggregat-ion treatment
SampleChemistry stateBinging energy eVFWHMs eV
Cu-BareC-C/C=C285.101.20
C-O286.561.20
C=O288.821.20
Cu-LLE aggregatesC-C/C=C284.901.05
C-O286.200.90
C-N286.801.00
C=O288.750.95
Table 2  De-convolution parameters of XPS fine spectra of C 1s on the surfaces of Q235 steel samples without and with LLE aggregation treatment
Fig.6  XPS fine spectra of N 1s on the surface of Q235 steel adsorbed with LLE aggregates
SampleChemistry stateBinging energy eVFWHMs eV
Cu-LLE aggregatesC-N398.800.95
N-Fe399.241.10
Table 3  De-convolution parameters of XPS fine spectra of N 1s on the surfaces of Q235 steel samples without and with LLE aggregation treatment
Fig.7  SEM surface micrographs of Q235 steel samples with different surface treatments after immersion for 6 h in 1 mol/L HCl solution: bare (a), polishing (b), and aggregation of 0.3 (c), 0.4 (d) and 0.5 g/L (e) LLE
Fig.8  AFM micrographs (a-c) and (d-f) the corresponding height profiles of polished Q235 steel samples without (a, d, b, e) and with (c, f) LLE aggregation before (a, d) and after (b, c, e, f) immersion in 1 mol/L HCl solution for 30 min
Fig.9  Contact angle diagrams of Q235 steel samples with-out (a) and with (b) LLE aggregates
Fig.10  Potentiodynamic polarization curves of Q235 steel electrodes adsorbed with different concentrations of LLE aggregates in 1 mol/L HCl solution
Copper electrodeC / g·L-1Ecorr / V/SCEIcorr / μA·cm-2βc / mV·dec-1βa / mV·dec-1ηj / %
Blank----0.482718.9-111.062112.931---
LLE-aggregates0.1-0.460185.5-110.57168.55274.20
0.2-0.440129.9-112.05757.25181.93
0.3-0.44475.48-106.87256.03889.50
0.4-0.43749.32-112.41047.15293.14
0.5-0.45269.86-112.84156.38690.28
Table 4  Fitting parameters of potentiodynamic polarization curves of Q235 steel electrodes adsorbed with different concentrations of LLE aggregates in 1 mol/L HCl solution
Fig.11  Nyquist (a) and Bode (b, c) plots of Q235 steel electrodes adsorbed with different concentrations of LLE aggregates
Fig.12  Equivalent circuit diagram for fitting EIS of various Q235 steel electrodes
Copper electrodeC / g·L-1Rs / Ω·cm2Rct / Ω·cm2Cdl / μF·cm-2nηj / %Χ 2 / 103
Blank---0.605642.73110.2750.9697---5.56
LLE-aggregates0.11.456147.461.1100.863571.012.91
0.21.095216.349.1300.864180.251.47
0.31.139410.242.8590.847189.589.05
0.41.309548.334.6060.813992.213.66
0.51.093345.446.3450.876987.631.19
Table 5  Electrochemical impedance parameters of Q235 steel electrodes adsorbed with different concentrations of LLE aggregates in 1 mol/L HCl solution
[1] Wang H M, Akid R. Encapsulated cerium nitrate inhibitors to provide high-performance anti-corrosion sol-gel coatings on mild steel [J]. Corros. Sci., 2008, 50: 1142
doi: 10.1016/j.corsci.2007.11.019
[2] Fayomi O, Popoola A P I. An investigation of the properties of Zn coated mild steel [J]. Int. J. Electrochem. Sci., 2012, 7: 6555
[3] Bayol E, Gürten A A, Dursun M, et al. Adsorption behavior and inhibition corrosion effect of sodium carboxymethyl cellulose on mild steel in acidic medium [J]. Acta Phys.-Chim. Sin., 2008, 24: 2236
doi: 10.1016/S1872-1508(08)60085-6
[4] Wang Z G, Hai C, Jiang J, et al. Corrosion behavior of Q235 steels in atmosphere at deyang district for one year [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 871
(王志高, 海潮, 姜杰 等. Q235钢在德阳大气环境中腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 871)
[5] Zhang D Q, Tang Y M, Qi S J, et al. The inhibition performance of long-chain alkyl-substituted benzimidazole derivatives for corrosion of mild steel in HCl [J]. Corros. Sci., 2016, 102: 517
doi: 10.1016/j.corsci.2015.10.002
[6] Hashim N Z N, Anouar E H, Kassim K, et al. XPS and DFT investigations of corrosion inhibition of substituted benzylidene Schiff bases on mild steel in hydrochloric acid [J]. Appl. Surf. Sci., 2019, 476: 861
doi: 10.1016/j.apsusc.2019.01.149
[7] Singh P, Ebenso E E, Olasunkanmi L O, et al. Electrochemical, theoretical, and surface morphological studies of corrosion inhibition effect of green naphthyridine derivatives on mild steel in hydrochloric acid [J]. J. Phys. Chem., 2016, 120C: 3408
[8] Kharbach Y, Qachchachi F Z, Haoudi A, et al. Anticorrosion performance of three newly synthesized isatin derivatives on carbon steel in hydrochloric acid pickling environment: electrochemical, surface and theoretical studies [J]. J. Mol. Liq., 2017, 246: 302
doi: 10.1016/j.molliq.2017.09.057
[9] Verma C, Olasunkanmi L O, Ebenso E E, et al. Adsorption behavior of glucosamine-based, pyrimidine-fused heterocycles as green corrosion inhibitors for mild steel: experimental and theoretical studies [J]. J. Phys. Chem., 2016, 120C: 11598
[10] Moretti G, Quartarone G, Tassan A, et al. Inhibition of mild steel corrosion in 1N sulphuric acid through indole [J]. Mater. Corros., 1994, 45: 641
[11] Moretti G, Quartarone G, Tassan A, et al. Some derivatives of indole as mild steel corrosion inhibitors in 0.5 M sulphuric acid [J]. Br. Corros. J., 1996, 31: 49
doi: 10.1179/bcj.1996.31.1.49
[12] Moretti G, Quartarone G, Tassan A, et al. 5-Amino- and 5-chloro-indole as mild steel corrosion inhibitors in 1 N sulphuric acid [J]. Electrochim. Acta, 1996, 41: 1971
doi: 10.1016/0013-4686(95)00485-8
[13] Elavarasan S, Kannan K, Chandrasekaran V. 2-Methyl imidazole as a corrosion inhibitor for mild steel in acid medium [J]. Asian J. Chem., 2006, 18: 2637
[14] Mehdipour M, Ramezanzadeh B, Arman S Y. Electrochemical noise investigation of Aloe plant extract as green inhibitor on the corrosion of stainless steel in 1 M H2SO4 [J]. J. Ind. Eng. Chem., 2015, 21: 318
[15] Alvarez P E, Fiori-Bimbi M V, Neske A, et al. Rollinia occidentalis extract as green corrosion inhibitor for carbon steel in HCl solution [J]. J. Ind. Eng. Chem., 2018, 58: 92
doi: 10.1016/j.jiec.2017.09.012
[16] Qiang Y J, Zhang S T, Tan B C, et al. Evaluation of Ginkgo leaf extract as an eco-friendly corrosion inhibitor of X70 steel in HCl solution [J]. Corros. Sci., 2018, 133: 6
doi: 10.1016/j.corsci.2018.01.008
[17] Ji G, Anjum S, Sundaram S, et al. Musa paradisica peel extract as green corrosion inhibitor for mild steel in HCl solution [J]. Corros. Sci., 2015, 90: 107
doi: 10.1016/j.corsci.2014.10.002
[18] Deyab M A. Egyptian licorice extract as a green corrosion inhibitor for copper in hydrochloric acid solution [J]. J. Ind. Eng. Chem., 2015, 22: 384
[19] Odewunmi N A, Umoren S A, Gasem Z M. Utilization of watermelon rind extract as a green corrosion inhibitor for mild steel in acidic media [J]. J. Ind. Eng. Chem., 2015, 21: 239
[20] Li X H, Deng S D, Fu H. Inhibition of the corrosion of steel in HCl, H2SO4 solutions by bamboo leaf extract [J]. Corros. Sci., 2012, 62: 163
doi: 10.1016/j.corsci.2012.05.008
[21] Xiao P G, Li L D, Liu Y. A preliminary investigation on safety evaluation system for health foods [J]. China J. Chin. Mater. Med., 2005, 30: 9
(肖培根, 李连达, 刘勇. 中药保健食品安全性评估系统的初步研究 [J]. 中国中药杂志, 2005, 30: 9)
[22] Zhao H W. Medical value and product development of Lotus leaf [J]. Mod. Agric. Sci. Technol., 2009, (18): 321
(赵海雯. 荷叶的药用价值及产品开发 [J]. 现代农业科技, 2009, (18): 321)
[23] Li M, Zhao Z H, Xuan J, et al. Advances in studies on chemical constituents and pharmacological effects of lotus leaves [J]. J. Liaoning Univ. Tradit. Chin. Med., 2020, 22(1): 135
(李敏, 赵振华, 玄静 等. 荷叶化学成分及其药理作用研究进展 [J]. 辽宁中医药大学学报, 2020, 22(1): 135)
[24] Xu J. Comparison of alkaloids content in lotus leaves at different growth stages [J]. Northwest Pharm. J., 2008, 23: 28
(许菊. 荷叶不同生长期荷叶碱含量比较 [J]. 西北药学杂志, 2008, 23: 28)
[25] Wang X, Ren S F, Zhang D X, et al. Inhibition effect of soybean meal extract on corrosion of Q235 steel in hydrochloric acid medium [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 267
(王霞, 任帅飞, 张代雄 等. 豆粕提取物在盐酸中对Q235钢的缓蚀性能 [J]. 中国腐蚀与防护学报, 2019, 39: 267)
[26] Mallaiya K, Subramaniam R, Srikandan S S, et al. Electrochemical characterization of the protective film formed by the unsymmetrical Schiff's base on the mild steel surface in acid media [J]. Electrochim. Acta, 2011, 56: 3857
doi: 10.1016/j.electacta.2011.02.036
[27] Ali-Löytty H, Louie M W, Singh M R, et al. Ambient-pressure XPS study of a Ni-Fe electrocatalyst for the oxygen evolution reaction [J]. J. Phys. Chem., 2016, 120C: 2247
[28] Morales-Gil P, Walczak M S, Cottis R A, et al. Corrosion inhibitor binding in an acidic medium: interaction of 2-mercaptobenizmidazole with carbon-steel in hydrochloric acid [J]. Corros. Sci., 2014, 85: 109
doi: 10.1016/j.corsci.2014.04.003
[29] Bouanis M, Tourabi M, Nyassi A, et al. Corrosion inhibition performance of 2, 5-bis (4-dimethylaminophenyl)-1, 3, 4-oxadiazole for carbon steel in HCl solution: Gravimetric, electrochemical and XPS studies [J]. Appl. Surf. Sci., 2016, 389: 952
doi: 10.1016/j.apsusc.2016.07.115
[30] Zarrouk A, Hammouti B, Lakhlifi T, et al. New 1 H -pyrrole-2, 5-dione derivatives as efficient organic inhibitors of carbon steel corrosion in hydrochloric acid medium: electrochemical, XPS and DFT studies [J]. Corros. Sci., 2015, 90: 572
doi: 10.1016/j.corsci.2014.10.052
[31] Singh P, Srivastava V, Quraishi M A. Novel quinoline derivatives as green corrosion inhibitors for mild steel in acidic medium: Electrochemical, SEM, AFM, and XPS studies [J]. J. Mol. Liq., 2016, 216: 164
doi: 10.1016/j.molliq.2015.12.086
[32] Chen N X, Zhang S T, Qiang Y J, et al. Inhibition effect of 1-vinyl-3-ethylimidazolium bromide for X65 steel in 0.5 M sulfuric acid solution [J]. Int. J. Electrochem. Sci., 2016, 11: 7230
[33] Zhang S T, Tao Z H, Li W H, et al. The effect of some triazole derivatives as inhibitors for the corrosion of mild steel in 1 M hydrochloric acid [J]. Appl. Surf. Sci., 2009, 255: 6757
doi: 10.1016/j.apsusc.2008.09.089
[34] Tao Z H, Zhang S T, Li W H, et al. Corrosion inhibition of mild steel in acidic solution by some oxo-triazole derivatives [J]. Corros. Sci., 2009, 51: 2588
doi: 10.1016/j.corsci.2009.06.042
[35] Feng L, Zhan S T, Xu Y, et al. The electron donating effect of novel pyrazolo-pyrimidine inhibitors on anticorrosion of Q235 steel in picking solution [J]. J. Mol. Liq., 2019, 286: 110893
doi: 10.1016/j.molliq.2019.110893
[36] Jiang L, Qiang Y J, Lei Z L, et al. Excellent corrosion inhibition performance of novel quinoline derivatives on mild steel in HCl media: experimental and computational investigations [J]. J. Mol. Liq., 2018, 255: 53
doi: 10.1016/j.molliq.2018.01.133
[37] Chen W, Huang D X, Wei F, et al. Inhibition effect of Brainea insignis extract against carbon steel corrosion in HCl solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 376
(陈文, 黄德兴, 韦奉 等. 铁蕨提取物对碳钢在盐酸中的缓蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 376)
[38] Abboud Y, Hammouti B, Abourriche A, et al. 5-Naphthylazo-8-hydroxyquinoline (5NA8HQ) as a novel corrosion inhibitor for mild steel in hydrochloric acid solution [J]. Res. Chem. Intermed., 2012, 38: 1591
doi: 10.1007/s11164-012-0486-0
[39] Guo L, Zhu S H, Zhang S T, et al. Theoretical studies of three triazole derivatives as corrosion inhibitors for mild steel in acidic medium [J]. Corros. Sci., 2014, 87: 366
doi: 10.1016/j.corsci.2014.06.040
[1] LYU Zhengping, LI Yuan, LIU Xiaohang, CUI Zhongyu, CUI Hongzhi, WANG Xin, PANG Kun, LI Yizhou. Synergistic Inhibition Effect of Thiourea and Sodium Nitrate on Crevice Corrosion of 7075 Al-alloy in Acidic Sodium Chloride Solution[J]. 中国腐蚀与防护学报, 2023, 43(6): 1367-1374.
[2] DONG Hongmei, LI Baoyi, RAN Boyuan, WANG Qi, NIU Yulan, DING Lifeng, QIANG Yujie. Corrosion Inhibition Mechanism of the Eco-friendly Corrosion Inhibitor Linagliptin on Copper in Sulfuric Acid[J]. 中国腐蚀与防护学报, 2023, 43(5): 1031-1040.
[3] HE Jing, YU Hang, FU Ziying, YUE Penghui. Effect of Water-soluble Corrosion Inhibitor on Corrosion Behavior of Q235 Pipeline Steel for Construction[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[4] ZHOU Hao, YOU Shijie, WANG Shengli. Corrosion Behavior and Corrosion Inhibitor for Copper Artifacts in CO2 Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1049-1056.
[5] ZOU Wenjie, DING Li, ZHANG Xuejiao, CHEN Jun. Epoxy/Organosiloxane Modified Cationic Acrylic Emulsion Composite Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
[6] HAO Wenkui, CHEN Xin, XU Lingling, HAN Yu, CHEN Yun, HUANG Luyao, ZHU Zhixiang, YANG Bingkun, WANG Xiaofang, ZHANG Qiang. Drawing of Atmospheric Corrosion Map of Carbon Steel and Galvanized Steel for Power Grid[J]. 中国腐蚀与防护学报, 2023, 43(4): 795-802.
[7] WANG Changgang, DANIEL Enobong Felix, LI Chao, DONG Junhua, YANG Hua, ZHANG Dongjiu. Corrosion Mechanisms of Carbon Steel- and Stainless Steel-bolt Fasteners in Marine Environments[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[8] ZHOU Kun, LIU Xinhua, LIU Shuai. Corrosion Inhibition of Navel Orange Peel Extract to Stainless Steel in Acidic Medium[J]. 中国腐蚀与防护学报, 2023, 43(3): 619-629.
[9] XIA Xiaojian, WAN Xinyuan, CHEN Yunxiang, HAN Jiceng, CHEN Yiyang, YAN Kanghua, LIN Deyuan, CHEN Tianpeng, ZUO Xiaomei, SUN Baozhuang, CHENG Xuequn. Effect of Heat Treatments on Corrosion Behavior of 3Cr Low Carbon Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 656-662.
[10] HUANG Miao, WANG Lizi, MA Xiaoqing, LI Xianghong. Synergistic Inhibition Effect of Walnut Green Husk Extract and Nd(NO3)3 on Aluminum in HCl Solution[J]. 中国腐蚀与防护学报, 2023, 43(3): 471-480.
[11] WU Hao, DENG Shuduan, LI Xianghong. Synergistic Inhibition Effect of Cuscuta Chinensis Lam Extract and Potassium Iodide on Cold Rolled Steel in Hydrochloric Acid[J]. 中国腐蚀与防护学报, 2023, 43(1): 77-86.
[12] ZHAO Yanliang, ZHAO Jingmao. Research Progress on Protection and Self-healing Performance of Layered Double Hydroxides Coatings on Mg-alloy[J]. 中国腐蚀与防护学报, 2023, 43(1): 1-5.
[13] LIAN Yubo, ZHANG Qingzhu, HAN Chuanghui, LI Wenjuan, WENG Huatao, JIANG Wei. Inhibition Behavior of a Nano-corrosion Inhibitor Capsule Prepared from MOFs and BTA for Copper[J]. 中国腐蚀与防护学报, 2022, 42(6): 1058-1064.
[14] XU Ping, ZHAO Meihui, BAI Pengkai. Effect of Hydroxyethylidene Diphosphonic Acid on Iron Bacteria Induced Corrosion of Carbon Steel in Circulating Cooling Water[J]. 中国腐蚀与防护学报, 2022, 42(6): 988-994.
[15] XUE Fang, LIU Liangyu, TAN Long. Aerobic Corrosion Process of Q235 Steel in NaHCO3 Solutions[J]. 中国腐蚀与防护学报, 2022, 42(5): 771-778.
No Suggested Reading articles found!