Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2019, Vol. 39 Issue (2): 152-159    DOI: 10.11902/1005.4537.2018.040
Current Issue | Archive | Adv Search |
Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete
Bo DA,Hongfa YU(),Haiyan MA,Zhangyu WU
Department of Civil Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Download:  HTML  PDF(3225KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of inhibitors on corrosion behavior of reinforced bar in coral aggregate seawater concrete (CASC) in artificial sea water was studied by means of linear polarization resistance method (LPR) and electrochemical impedance spectroscopy (EIS). Two inhibitors, calcium nitrite rust inhibitor (CN) and amino-alcohol rust inhibitor (AA) are concerned, while two ways are adopted for mixing inhibitor into the concrete, namely, the inhibitor was directly dissolved into the seawater (ordinary way) and absorbed onto the coral aggregate (pre-absorbed way). The results show that for CASC concretes without and with inhibitor added via ordinary way, Ecorr, Rp and Rct decreased with the extension of the exposure time, but for those with the pre-absorbed inhibitor, Ecorr, Rp and Rct has a grown trend when exposure for 90 d, demonstrating that the pre-absorbed inhibitor onto the aggregate would gradually and continuously be released into the concrete to increase its barrier effect to the migration of harmful Cl-, therewith to alleviate the corrosion of the reinforced bar. Besides, the addition of CN or AA could enhance the corrosion resistance of the reinforcement bar, however the degradation rate of anticorrosion effectiveness of CN was higher than that of AA. Therefore, for marine engineering structures made of CASC on islands and reefs, it was suggested to adopt the pre-absorbed AA, which could prolong the time for the corrosion initiation of reinforced bar, reduce the corrosion rate and prolong the service life of the CASC structures.

Key words:  coral aggregate seawater concrete      reinforced bar corrosion      linear polarization resistance method      electrochemical impedance spectroscopy method      inhibitor      adding mode     
Received:  01 April 2018     
ZTFLH:  TU528  
Fund: National Natural Science Foundation of China(51508272);National Natural Science Foundation of China(51678304);National Natural Science Foundation of China(51878350);National Natural Science Foundation of China(11832013);Natural Science Foundation of Jiangsu Province(BK20180433);China Postdoctoral Science Foundation(2018M630558)
Corresponding Authors:  Hongfa YU     E-mail:  yuhongfa@nuaa.edu.cn

Cite this article: 

Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete. Journal of Chinese Society for Corrosion and protection, 2019, 39(2): 152-159.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2018.040     OR     https://www.jcscp.org/EN/Y2019/V39/I2/152

Physical propertyCoralCoral sand
Apparent density / (kg·m-3)23002500
Bulk density / (kg·m-3)10001115
Cylindrical compressive strength / MPa5.2---
Cl- content / %0.0740.112
Fineness modulus---2.9
Table 1  Physical properties of coral aggregate
No.Concrete strengthSteel typeSteel quantityInhibitorAdmixture method
CASC-1C50Common steel16N---
CASC-2163%CNTraditional addition
CASC-3163%CN (P)Pre-absorption
CASC-4162%AATraditional addition
CASC-5162%AA (P)Pre-absorption
  
Fig.1  Schematic diagrams of CASC: (a) vertical sectional profile, (b) cross sectional profile (A-A) (unit: mm)
Fig.2  Schematic diagram of electrochemistry test of CASC
Fig.3  Influence of inhibitor type and adding mode on Ecorr of CASC
Fig.4  Influence of inhibitor type and adding mode on the linear polarization curve of CASC after immersion in artificial seawater for 0 d (a), 28 d (b), 90 d (c) and 180 d (d)
Fig.5  Influence of inhibitor type and adding mode on Rp of CASC
Fig.6  Corrosion states of common steel I (a) and II (b) rebar in reinforc-ed-CASC beam
Fig.7  Influence of inhibitor type and adding mode on the electrochemical impedance spectroscopy of CASC after immersion in artificial seawater for 0 d (a), 28 d (b), 90 d (c) and 180 d (d)
Exposuretime / dN2%AA2%AA (P)3%CN3%CN (P)
030.132.933.535.435.2
2829.430.435.031.633.2
9024.128.766.029.654.7
18019.228.273.523.468.8
Table 3  Values of Rct of common steel rebar in CASC with different inhibitors
[1] Arumugam R A, Ramamurthy K. Study of compressive strength characteristics of coral aggregate concrete [J]. Mag. Concr. Res., 1996, 48: 141
[2] Wang X Z. Study on engineering geological properties of coral reefs and feasibility of large project construction on Nansha Islands [D]. Wuhan:Institute of Rock and Soil Mechanics, The Chinese Academy of Sciences, 2008
[2] 王新志. 南沙群岛珊瑚礁工程地质特性及大型工程建设可行性研究 [D]. 武汉: 中国科学院武汉岩土力学研究所, 2008
[3] Da B, Yu H F, Ma H Y, et al. Chloride diffusion study of coral concrete in a marine environment [J]. Constr. Build. Mater., 2016, 123: 47
[4] Song H W, Lee C H, Ann K Y. Factors influencing chloride transport in concrete structures exposed to marine environments [J]. Cem. Concr. Compos., 2008, 30: 113
[5] Angst U, Elsener B, Larsen C K, et al. Critical chloride content in reinforced concrete-a review [J]. Cem. Concr. Res., 2009, 39: 1122
[6] Luciano J, Miltenberger M. Predicting chloride diffusion coefficients from concrete mixture proportions [J]. Mater. J., 1999, 96: 698
[7] Scholer C H. Examination and study of certain structures in the Pacific Ocean Area [R]. California: U. S. Naval Civil Engineering Laboratory, 1959
[8] Howdyshell P A. The use of coral as an aggregate for portland cement concrete structures [R]. Springfield: U. S. Army Construction Engineering Research Laboratory, 1974
[9] Tehada T, Funahashi M. Cathodic protection of building reinforcing steel [R]. Orlando: NACE International, 2005
[10] Wattanachai P, Otsuki N, Saito T, et al. A study on chloride ion diffusivity of porous aggregate concretes and improvement method [J]. Doboku Gakkai Ronbunshuu, 2009, 65E: 30
[11] Kakooei S, Akil H M, Dolati A, et al. The corrosion investigation of rebar embedded in the fibers reinforced concrete [J]. Constr. Build. Mater., 2012, 35: 564
[12] Kakooei S, Akil H M, Jamshidi M, et al. The effects of polypropylene fibers on the properties of reinforced concrete structures [J]. Constr. Build. Mater., 2012, 27: 73
[13] Wang F, Zha X X. Experimental and theoretical study on coral concrete filled steel tube [J]. J. Build. Struct., 2013, 34(S1): 288
[13] 王芳, 查晓雄. 钢管珊瑚混凝土试验和理论研究 [J]. 建筑结构学报, 2013, 34(S1): 288)
[14] Da B, Yu H F, Ma H Y, et al. Factors influencing durability of coral concrete structure in the South China Sea [J]. J. Chin. Ceram. Soc., 2016, 44: 253
[14] 达波, 余红发, 麻海燕等. 南海海域珊瑚混凝土结构的耐久性影响因素 [J]. 硅酸盐学报, 2016, 44: 253
[15] Da B, Yu H F, Ma H Y, et al. Surface free chloride concentration and apparent chloride diffusion coefficient of coral seawater concrete [J]. J. Southeast Univ. (Nat. Sci. Ed.), 2016, 46: 1093
[15] 达波, 余红发, 麻海燕等. 全珊瑚海水混凝土的表面自由氯离子浓度和表观氯离子扩散系数 [J]. 东南大学学报 (自然科学版), 2016, 46: 1093
[16] Luo H, Dong C F, Li X G, et al. The electrochemical behaviour of 2205 duplex stainless steel in alkaline solutions with different pH in the presence of chloride [J]. Electrochim. Acta, 2012, 64: 211
[17] Alsabagh A M, Elsabee M Z, Moustafa Y M, et al. Corrosion inhibition efficiency of some hydrophobically modified chitosan surfactants in relation to their surface active properties [J]. Egypt.J. Pet., 2014, 23: 349
[18] Shabani-Nooshabadi M, Ghandchi M S. Santolina chamaecyparissus extract as a natural source inhibitor for 304 stainless steel corrosion in 3.5%NaCl [J]. J. Ind. Eng. Chem., 2015, 31: 231
[19] Millard S G, Gowers K R, Gill J S. Reinforcement corrosion assessment using linear polarisation techniques [J]. ACI Spec. Publ., 1991, 128: 373
[20] Da B, Yu H F, Ma H Y, et al. Experimental investigation of whole stress-strain curves of coral concrete [J]. Constr. Build. Mater., 2016, 122: 81
[21] Xu C. Electrochemical characterization and related inspection and monitoring technology of reinforcement corrosion in concrete structure [D]. Hangzhou: Zhejiang University, 2012
[21] 许晨. 混凝土结构钢筋锈蚀电化学表征与相关检监测技术 [D]. 杭州: 浙江大学, 2012
[22] He H Z, Cui Y L, Shi M L, et al. Real time monitoring of corrosion of rebar in concrete [J]. J. Build. Mater., 2013, 16: 50
[22] 贺鸿珠, 崔玉理, 史美伦等. 混凝土中钢筋锈蚀的实时监测 [J]. 建筑材料学报, 2013, 16: 50
[23] Cao Z L, Xiao P, Hibino M. Application research review on nitrite-based corrosion inhibitors [J]. Concrete, 2011, (10): 49
[23] 曹忠露, 肖鹏, 日比野诚. 亚硝酸钙阻锈剂的应用研究综述 [J]. 混凝土, 2011, (10): 49)
[24] Chen C C, Zhou W L, Liu J P. Efficiency of new organic corrosion inhibitor for rebar in concrete [J]. J. Build. Mater., 2011, 14: 136
[24] 陈翠翠, 周伟玲, 刘加平. 新型有机阻锈剂对钢筋的阻锈作用 [J]. 建筑材料学报, 2011, 14: 136
[1] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] SHAO Minglu, LIU Dexin, ZHU Tongyu, LIAO Bichao. Preparation of Urotropine Quaternary Ammonium Salt and Its Complex as Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[4] JIA Qiaoyan, WANG Bei, WANG Yun, ZHANG Lei, WANG Qing, YAO Haiyuan, LI Qingping, LU Minxu. Corrosion Behavior of X65 Pipeline Steel at Oil-Water Interface Region in Hyperbaric CO2 Environment[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[5] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[6] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[7] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[8] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[9] Jianguo LIU,Ge GAO,Yazhou XU,Zili LI,Wanran JI. Corrosion Inhibition Performance of Imidazoline Derivatives[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[10] Yaqiong LI,Jingling MA,Guangxin WANG,Yujie ZHU,Yongfa SONG,Jingli ZHANG. Effect of Sodium Phosphate and Sodium Dodecylbenzene-sulfonate on Discharge Performance of AZ31 Magnesium Air Battery[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[11] Yunxiang CHEN, Lijuan FENG, Jianbin CAI, Xuan WANG, Yicheng HONG, Deyuan LIN, Jianhuang ZHUANG, Huaiyu YANG. Inhibition Effect of a New Composite Organic Inhibitor on Corrosion of Steel Rebar in Simulated Concrete Solution or Inside Mortar Specimen[J]. 中国腐蚀与防护学报, 2018, 38(4): 343-350.
[12] Jingling MA, Shuai TONG, Fengzhang REN, Guangxin WANG, Yaqiong LI, Jiuba WEN. Influences of Inhibitor L-Cysteine/zinc Oxide on Electrochemical Performance of 3102 Al-alloy in Alkaline Solution[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[13] Wanjun PENG, Jiheng DING, Hao CHEN, Haibin YU. Corrosion Inhibition of Bio-based Inhibitor Furfuryl Glycidyl Ether[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[14] Bei QIAN, Chengbao LIU, Zuwei SONG, Junfeng REN. Anticorrosion Performance of Epoxy Coating Modified with Nanocontainers[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[15] Yong ZHOU, Yu ZUO, Fu-an YAN. Effect and Mechanism of Inhibitors on Pitting Corrosion of Metals[J]. 中国腐蚀与防护学报, 2017, 37(6): 487-494.
No Suggested Reading articles found!