Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (5): 467-472    DOI: 10.11902/1005.4537.2017.013
Current Issue | Archive | Adv Search |
Effect of Soot on Corrosion Behavior of 409 Stainless Steel
Congcong CHEN1,Yong YANG1,Cheng ZHANG1,Hongyun BI2,Moucheng LI1()
1 Institute of Materials, Shanghai University, Shanghai 200072, China
2 Research Institute, Baoshan Iron & Steel Co., Ltd., Shanghai 201900, China
Download:  HTML  PDF(1039KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The influence of soot on the corrosion behavior of 409 stainless steel for automotive muffler was studied by means of oxidation-immersion-evaporation cycle test with electrochemical impedance spectroscopy, XRD, SEM as well as pitting depth-and corrosion weight loss-measurement. The results show that the corrosion products formed on the sample surfaces are similar in the condensate liquids with and without soot. However, the corrosion potential increases lightly and both the pitting depth and weight loss become higher for the steel in the presence of soot. These can be attributed mainly to the galvanic effect between deposited soot and the stainless steel, which reduces the charge transfer resistance of the corrosion system and accelerates the corrosion of 409 stainless steel in the condensate solution.

Key words:  soot      automotive exhaust system      corrosion      stainless steel     
Received:  18 January 2017     
Fund: Supported by National Natural Science Foundation of China (51134010, U1660205) and Project of Science and Technology Commission of Shanghai Municipality (15XD1520100)

Cite this article: 

Congcong CHEN,Yong YANG,Cheng ZHANG,Hongyun BI,Moucheng LI. Effect of Soot on Corrosion Behavior of 409 Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2017, 37(5): 467-472.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.013     OR     https://www.jcscp.org/EN/Y2017/V37/I5/467

Fig.1  Variations of corrosion potentials of two kinds of specimens with cyclic times during oxidation-immersion test
Fig.2  Nyquist (a, b) and Bode (c, d) plots of S1 (a, c) and S2 (b, d) specimens after oxidation-immersion test fordifferent cycles
Fig.3  SEM morphologies of S1 (a, c) and S2 (b, d) specimens before (a, b) and after (c, d) removal of corrosion products on the surfaces
Fig.4  XRD patterns of the corrosion products formed on S1 and S2 specimens after oxidation-immersion test for 50 cycles
Fig.5  Depth values of the ten deepest pits on the surfaces of S1 and S2 specimens
Fig.6  Equivalent circuit for the corrosion of 409 stainless steel in condensate solution
Fig.7  Fitted values of Rf (a) and Rt (b) from EIS spectra of S1 and S2 specimens after test for different cycles
[1] Liu Q, Liu Y, Xu J T.Economic and environmental effects of improved auto fuel economy standard in China: A CGE analysis[J]. Acta Sci. Natur. Univ. Pekinensis, 2016, 52: 515
[1] (柳青, 刘宇, 徐晋涛. 汽车尾气排放标准提高的经济影响与减排效果——基于可计算一般均衡(CGE)模型的分析[J]. 北京大学学报自然科学版, 2016, 52: 515)
[2] Yan H T, Li X, Bi H Y, et al. Corrosion failure analysis of automobile muffler[J]. Phys. Test. Chem. Anal. Phys. Test., 44A: 150
[2] (颜海涛, 李鑫, 毕洪运等. 汽车消声器的腐蚀失效分析[J]. 理化检验-物理分册, 2008, 44A: 150)
[3] Zhou T.Automobile exhaust components and purification methods[J]. Mod. Enterpries Educ., 2012, (23): 287
[3] (周婷. 汽车尾气成分及其净化方式[J]. 现代企业教育, 2012, (23): 287)
[4] Li M C, Wang S D, Ma R Y, et al.Effect of cyclic oxidation on electrochemical corrosion of type 409 stainless steel in the simulated muffler condensates[J]. J. Solid State Electrochem., 2012, 16: 3059
[5] Ruan W H, Wang S D, Li M C, et al.Corrosion behavior of 409 ferritic stainless steel in condensate solution of automotive mufflers[J]. Corros. Sci. Prot. Technol., 2012, 24: 301
[5] (阮伟慧, 王士栋, 李谋成等. 409不锈钢在消声器冷凝液中的腐蚀行为[J]. 腐蚀科学与防护技术, 2012, 24: 301)
[6] Ma R Y, Li M C, Shen J N.Effect of pH on condensate corrosion of type 409 stainless steel for automotive mufflers[J]. Corros. Prot., 2015, 36: 448
[6] (马荣耀, 李谋成, 沈嘉年. 冷凝液pH对消声器用409不锈钢腐蚀行为的影响[J]. 腐蚀与防护, 2015, 36: 448)
[7] Wang C P, Shen Y F, Chen C C, et al.Effect of exposure to steam on corrosion of type 439 stainless steel for automotive mufflers[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 165
[7] (汪长鹏, 申宇凤, 陈聪聪等. 蒸汽环境对消声器用439不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36: 165)
[8] Li M C, Zhang H, Huang R F, et al.Effect of SO2 on oxidation of type 409 stainless steel and its implication on condensate corrosion in automotive mufflers[J]. Corros. Sci., 2014, 80: 96
[9] Xu Z H, Wang C P, Shen Y F, et al.Condensates induced corrosion of stainless steels for automotive SCR system[J]. Corros. Sci. Prot. Technol., 2015, 27: 595
[9] (徐泽瀚, 汪长鹏, 申宇凤等. 汽车SCR系统用不锈钢的冷凝液腐蚀行为研究[J]. 腐蚀科学与防护技术, 2015, 27: 595)
[10] Li W Y, Wang J X, Che J W.Analysis on corresponding problems of WFGD flue gas wet emission[J]. Proc. CSEE, 2007, 27(14): 36
[10] (李文艳, 王冀星, 车建炜. 湿法脱硫烟气湿排问题分析[J]. 中国电机工程学报, 2007, 27(14): 36)
[11] Li Y H.Application of corrosion prevention and dust collector for gas chimney[J]. Chem. Fertil. Ind., 1989, (1): 39
[11] (李永恒. 煤气炉烟囱防腐蚀和除尘器应用[J]. 化肥工业, 1989, (1): 39)
[12] Zuo Z H.Causes of corrosion of coking gas pipes and preventive measures[J]. Metall. Power, 2014, (3): 23
[12] (左祖华. 焦炉煤气管道腐蚀原因与预防措施的探讨[J]. 冶金动力, 2014, (3): 23)
[13] AK Steel Corporation.Aluminized steel type 1 stainless 409 and 439 [A]. Product Data Bulletin[C]. West Chester, 2007: 1
[14] Wang Y, Tang Y, Xie C S, et al.The applications of the electrochemical impedance spectroscopy in the materials researches[J]. Mater. Rev., 2011, 25(13): 5
[14] (王芸, 汤滢, 谢长生等. 电化学阻抗谱在材料研究中的应用[J]. 材料导报, 2011, 25(13): 5)
[15] Zhang H, Zhang G L, Liu X, et al.Condensate corrosion behavior of stainless steels for automotive mufflers[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 20
[15] (张辉, 张国利, 刘星等. 消声器用不锈钢的冷凝液腐蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36: 20)
[16] Ling C J, Mao Y, Tian Z W.Nature of corrosion resistance for the electrochemically modified passive film of 18-8 stainless steel I. The characteristics of chemical composition, structure and chemical heterogeneity of the passive film[J]. J. Chin. Soc. Corros. Prot., 1992, 12: 205
[16] (林昌健, 茅禹, 田昭武. 电化学改性不锈钢钝化膜的耐蚀机理研究I. 钝化膜的化学组分、结构及表面缺陷特征[J]. 中国腐蚀与防护学报, 1992, 12: 205)
[17] Sun M, Xiao K, Dong C F, et al.Electrochemical behaviors of ultra high strength steels with corrosion products[J]. Acta Metall. Sin., 2011, 47: 442
[17] (孙敏, 肖葵, 董超芳等. 带腐蚀产物超高强度钢的电化学行为[J]. 金属学报, 2011, 47: 442)
[18] Wang J, Cao C N, Lin H C.Features of AC impedance of pitting corroded electrodes during pits propagation[J]. J. Chin. Soc. Corros. Prot., 1989, 9: 271
[18] (王佳, 曹楚南, 林海潮. 孔蚀发展期的电极阻抗频谱特征[J]. 中国腐蚀与防护学报, 1989, 9: 271)
[19] Li Q, Xie Y L, Zhong Y J, et al.Research progress in technologies for the abatement of soot particles from diesel engines[J]. J. Zhejiang Normal Univ.(Nat. Sci.), 2009, 32: 97
[19] (李倩, 谢云龙, 钟依均等. 柴油机碳颗粒物净化技术的研究进展[J]. 浙江师范大学学报(自然科学版), 2009, 32: 97)
[20] Jin X, Xiao C F, Yu C K, et al.Non-continuous conductive behavior of CB/PET fiber[J]. Chin. J. Mater. Res., 2010, 24: 311
[20] (金欣, 肖长发, 俞传坤等. 碳黑/聚酯纤维非连续性导电行为研究[J]. 材料研究学报, 2010, 24: 311)
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[10] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[11] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[12] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[14] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!