Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (3): 223-229    DOI: 10.11902/1005.4537.2019.055
Current Issue | Archive | Adv Search |
Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking
ZHANG Zhen1,2, WU Xinqiang1(), TAN Jibo1
1 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Download:  HTML  PDF(592KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The development of electrochemical noise signal processing methods for investigation of corrosion mechanisms was introduced. The measurement and interpretation of the electrochemical noise occurred during stress corrosion cracking were reviewed. The applicability and existing problems related with the electrochemical noise technique for in situ monitoring of stress corrosion cracking in high-temperature and high-pressure water were also discussed.

Key words:  electrochemical noise      corrosion mechanism      signal processing      stress corrosion cracking      high temperature water     
Received:  01 May 2019     
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(51671201);National Natural Science Foundation of China(51371174);National Science and Technology Major Project(2017ZX06002003-004-002);Key Programs of Chinese Academy of Sciences(ZDRW-CN-2017-1);Innovation Fund of Institute of Metal Research, Chinese Academy of Sciences(SCJJ-2013-ZD-02)
Corresponding Authors:  WU Xinqiang     E-mail:  xqwu@imr.ac.cn

Cite this article: 

ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking. Journal of Chinese Society for Corrosion and protection, 2020, 40(3): 223-229.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.055     OR     https://www.jcscp.org/EN/Y2020/V40/I3/223

[1] Zhang T, Yang Y G, Shao Y W, et al. Advances of the analysis methodology for electrochemical noise [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 1
(张涛, 杨延格, 邵亚薇等. 电化学噪声分析方法的研究进展 [J]. 中国腐蚀与防护学报, 2014, 34: 1)
[2] Zhang J Q, Zhang Z, Wang J M, et al. Analysis and application of electrochemical noise— I. Theory of electrochemical noise analysis [J]. J. Chin. Soc. Corros. Prot., 2001, 21: 310
(张鉴清, 张昭, 王建明等. 电化学噪声的分析与应用— I. 电化学噪声的分析原理 [J]. 中国腐蚀与防护学报, 2001, 21: 310)
[3] Xia D H, Song S Z, Behnamian Y. Detection of corrosion degradation using electrochemical noise (EN): Review of signal processing methods for identifying corrosion forms [J]. Corros. Eng. Sci. Technol., 2016, 51: 527
[4] Jamali S S, Mills D J. A critical review of electrochemical noise measurement as a tool for evaluation of organic coatings [J]. Prog. Org. Coat., 2016, 95: 26
[5] Ma C, Wang Z Q, Behnamian Y, et al. Measuring atmospheric corrosion with electrochemical noise: A review of contemporary methods [J]. Measurement, 2019, 138: 54
doi: 10.1016/j.measurement.2019.02.027
[6] Bahrami M J, Shahidi M, Hosseini S M A. Comparison of electrochemical current noise signals arising from symmetrical and asymmetrical electrodes made of Al alloys at different pH values using statistical and wavelet analysis. Part I: Neutral and acidic solutions [J]. Electrochim. Acta, 2014, 148: 127
doi: 10.1016/j.electacta.2014.10.031
[7] Cheng Y F, Luo J L. Electronic structure and pitting susceptibility of passive film on carbon steel [J]. Electrochim. Acta, 1999, 44: 2947
doi: 10.1016/S0013-4686(99)00011-0
[8] Sanchez-Amaya J M, Cottis R A, Botana F J. Shot noise and statistical parameters for the estimation of corrosion mechanisms [J]. Corros. Sci., 2005, 47: 3280
[9] Cheng Y F, Luo J L, Wilmott M. Spectral analysis of electrochemical noise with different transient shapes [J]. Electrochim. Acta, 2000, 45: 1763
[10] Cottis R A, Homborg A M, Mol J M C. The relationship between spectral and wavelet techniques for noise analysis [J]. Electrochim. Acta, 2016, 202: 277
[11] Shi Y Y, Zhang Z, Cao F H, et al. Dimensional analysis applied to pitting corrosion measurements [J]. Electrochim. Acta, 2008, 53: 2688
[12] Bertocci U, Gabrielli C, Huet F, et al. Noise resistance applied to corrosion measurements: 1. Theoretical analysis [J]. J. Electrochem. Soc., 1997, 144: 31
[13] Aballe A, Bethencourt M, Botana F J, et al. Using wavelets transform in the analysis of electrochemical noise data [J]. Electrochim. Acta, 1999, 44: 4805
[14] Moshrefi R, Mahjani M G, Jafarian M. Application of wavelet entropy in analysis of electrochemical noise for corrosion type identification [J]. Electrochem. Commun., 2014, 48: 49
doi: 10.1016/j.elecom.2014.08.005
[15] Homborg A M, Tinga T, Zhang X, et al. Transient analysis through Hilbert spectra of electrochemical noise signals for the identification of localized corrosion of stainless steel [J]. Electrochim. Acta, 2013, 104: 84
[16] Homborg A M, Morales C F L, Tinga T, et al. Detection of microbiologically influenced corrosion by electrochemical noise transients [J]. Electrochim. Acta, 2014, 136: 223
doi: 10.1016/j.electacta.2014.05.102
[17] Xia D H, Song S Z, Wang J H, et al. Determination of corrosion types from electrochemical noise by phase space reconstruction theory [J]. Electrochim. Commun., 2012, 15: 88
doi: 10.1016/j.elecom.2011.11.032
[18] Hou Y, Aldrich C, Lepkova K, et al. Monitoring of carbon steel corrosion by use of electrochemical noise and recurrence quantification analysis [J]. Corros. Sci., 2016, 112: 63
doi: 10.1016/j.corsci.2016.07.009
[19] Cazares-Ibáñez E, Vázquez-Coutiño G A, García-Ochoa E. Application of recurrence plots as a new tool in the analysis of electrochemical oscillations of copper [J]. J. Electroanal. Chem., 2005, 583: 17
[20] Yang Y G, Zhang T, Shao Y W, et al. Effect of hydrostatic pressure on the corrosion behaviour of Ni-Cr-Mo-V high strength steel [J]. Corros. Sci., 2010, 52: 2697
doi: 10.1016/j.corsci.2010.04.025
[21] Zhang Z, Wu X Q. Correlated pitting stages of 304 stainless steel with recurrence quantification analysis of electrochemical noise [J]. Mater. Corros., 2019, 70: 197
[22] Chen J F, Bogaerts W F. Electrochemical emission spectroscopy for monitoring uniform and localized corrosion [J]. Corrosion, 1996, 52: 753
doi: 10.5006/1.3292068
[23] Wang C, Cai Y Z, Ye C Q, et al. In-situ monitoring of the localized corrosion of 304 stainless steel in FeCl3 solution using a joint electrochemical noise and scanning reference electrode technique [J]. Electrochem. Commun., 2018, 90: 11
[24] Du G, Li J, Wang W K, et al. Detection and characterization of stress-corrosion cracking on 304 stainless steel by electrochemical noise and acoustic emission techniques [J]. Corros. Sci., 2011, 53: 2918
[25] Cottis R A. The significance of electrochemical noise measurements on asymmetric electrodes [J]. Electrochim. Acta, 2007, 52: 7585
[26] Bautistia A, Huet F. Noise resistance applied to corrosion measurements: IV. Asymmetric coated electrodes [J]. J. Electrochem. Soc., 1999, 146: 1730
doi: 10.1149/1.1391834
[27] Kovač J, Leban M, Legat A. Detection of SCC on prestressing steel wire by the simultaneous use of electrochemical noise and acoustic emission measurements [J]. Electrochim. Acta, 2007, 52: 7607
doi: 10.1016/j.electacta.2006.12.085
[28] Kovac J, Alaux C, Marrow T J, et al. Correlations of electrochemical noise, acoustic emission and complementary monitoring techniques during intergranular stress-corrosion cracking of austenitic stainless steel [J]. Corros. Sci., 2010, 52: 2015
doi: 10.1016/j.corsci.2010.02.035
[29] Bolivar J, Frégonèse M, Réthoré J, et al. Evaluation of multiple stress corrosion crack interactions by in-situ Digital Image Correlation [J]. Corros. Sci., 2017, 128: 120
doi: 10.1016/j.corsci.2017.09.001
[30] Gomez-Duran M, Macdonald D D. Stress corrosion cracking of sensitized type 304 stainless steel in thiosulfate solution: I. Fate of the coupling current [J]. Corros. Sci., 2003, 45: 1455
doi: 10.1016/S0010-938X(02)00219-6
[31] Lentka L, Smulko J. Methods of trend removal in electrochemical noise data-Overview [J]. Measurement, 2019, 131: 569
doi: 10.1016/j.measurement.2018.08.023
[32] Luo J L, Qiao L J. Application and evaluation of processing methods of electrochemical noise generated during stress corrosion cracking [J]. Corrosion, 1999, 55: 870
doi: 10.5006/1.3284043
[33] Cottis R A, Loto C A. Electrochemical noise generation during SCC of a high-strength carbon steel [J]. Corrosion, 1990, 46: 12
doi: 10.5006/1.3585059
[34] Loto C A, Cottis R A. Electrochemical noise generation during stress corrosion cracking of the high-strength aluminum AA 7075-T6 alloy [J]. Corrosion, 1989, 45: 136
doi: 10.5006/1.3577831
[35] Loto C A, Cottis R A. Electrochemical noise generation during stress corrosion cracking of alpha-brass [J]. Corrosion, 1987, 43: 499
doi: 10.5006/1.3583893
[36] Watanabe Y, Kondo T. Current and potential fluctuation characteristics in intergranular stress corrosion cracking processes of stainless steels [J]. Corrosion, 2000, 56: 1250
doi: 10.5006/1.3280513
[37] Leban M, Ž Bajt, Legat A. Detection and differentiation between cracking processes based on electrochemical and mechanical measurements [J]. Electrochim. Acta, 2004, 49: 2795
doi: 10.1016/j.electacta.2004.01.042
[38] Breimesser M, Ritter S, Seifert H P, et al. Application of electrochemical noise to monitor stress corrosion cracking of stainless steel in tetrathionate solution under constant load [J]. Corros. Sci., 2012, 63: 129
doi: 10.1016/j.corsci.2012.05.017
[39] Anita T, Pujar M G, Shaikh H, et al. Assessment of stress corrosion crack initiation and propagation in AISI type 316 stainless steel by electrochemical noise technique [J]. Corros. Sci., 2006, 48: 2689
doi: 10.1016/j.corsci.2005.09.007
[40] Calabrese L, Bonaccorsi L, Galeano M, et al. Identification of damage evolution during SCC on 17-4 PH stainless steel by combining electrochemical noise and acoustic emission techniques [J]. Corros. Sci., 2015, 98: 573
doi: 10.1016/j.corsci.2015.05.063
[41] Acuña-González N, García-Ochoa E, González-Sánchez J. Assessment of the dynamics of corrosion fatigue crack initiation applying recurrence plots to the analysis of electrochemical noise data [J]. Int. J. Fatigue, 2008, 30: 1211
[42] Stewart J, Wells D B, Scoot P M, et al. Electrochemical noise measurements of stress corrosion cracking of sensitized austenitic stainless steel in high-purity oxygenated water at 288℃ [J]. Corros. Sci., 1992, 33: 73
doi: 10.1016/0010-938X(92)90018-X
[43] Manahan M P, MacDonald D D, Peterson A J. Determination of the fate of the current in the stress-corrosion cracking of sensitized type 304 SS in high temperature aqueous systems [J]. Corros. Sci., 1995, 37: 189
doi: 10.1016/0010-938X(94)00129-T
[44] Watanabe Y, Kain V, Kobayashi M. Electrochemical transients observed during slow strain rate test of alloy 600 in borated and lithiated high temperature water [J]. JSME Int. J. Ser. A, 2002, 45: 476
[45] Arganis-Juarez C R, Malo J M, Uruchurtu J. Electrochemical noise measurements of stainless steel in high temperature water [J]. Nucl. Eng. Des., 2007, 237: 2283
doi: 10.1016/j.nucengdes.2007.04.010
[46] Kim S W, Kim H P. Electrochemical noise analysis of PbSCC of Alloy 600 SG tube in caustic environments at high temperature [J]. Corros. Sci., 2009, 51: 191
doi: 10.1016/j.corsci.2008.10.014
[47] Ritter S, Seifert H P. Influence of reference electrode distance and hydrogen content on electrochemical potential noise during SCC in high purity, high temperature water [J]. Corros. Eng. Sci. Technol., 2013, 48: 199
doi: 10.1179/1743278212Y.0000000061
[48] Ritter S, Seifert H P. Detection of SCC initiation in austenitic stainless steel by electrochemical noise measurements [J]. Mater. Corros., 2013, 64: 683
[49] Hou Y, Aldrich C, Lepkova K, et al. Analysis of electrochemical noise data by use of recurrence quantification analysis and machine learning methods [J]. Electrochim. Acta, 2017, 256: 337
doi: 10.1016/j.electacta.2017.09.169
[1] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[3] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[4] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[5] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[6] LIANG Yi, DU Yanxia. Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[7] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[8] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[9] Keqian ZHANG,Shilin HU,Zhanmei TANG,Pingzhu ZHANG. Review on Stress Corrosion Crack Propagation Behavior of Cold Worked Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[10] Xijing WANG, Boshi WANG, Chao YANG, Yan YANG, Bin SHEN. Hot Corrosion of Pure Nickel and Its Weld Joints in Molten Na2SO4-K2SO4 Salts[J]. 中国腐蚀与防护学报, 2018, 38(5): 495-501.
[11] Pengliang AN, Ping LIANG, Jianmin REN, Yanhua SHI, Feng LIU, Siyao CHEN. Characteristics on Electrochemical Noise of Pitting Corrosion for High Nitrogen Austenitic Stainless Steels[J]. 中国腐蚀与防护学报, 2018, 38(1): 26-32.
[12] Ruolin ZHU, Litao ZHANG, Jianqiu WANG, Zhiming ZHANG, En-Hou HAN. Stress Corrosion Crack Propagation Behavior of Elbow Pipe of Nuclear Grade 316LN Stainless Steel in High Temperature High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[13] Dahai XIA, Shizhe SONG, Jihui WANG, Zhimng GAO, Wenbin HU. Research Progress on Corrosion Mechanism of Tinned Steel Sheet Used for Food Parkaging[J]. 中国腐蚀与防护学报, 2017, 37(6): 513-518.
[14] Xiaocheng ZHOU, Qiaoqi CUI, Jinghuan JIA, Zhiyong LIU, Cuiwei DU. Influence of Cl- Concentration on Stress Corrosion Cracking Behavior of 316L Stainless Steel in Alkaline NaCl/Na2S Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[15] Zhenning CHEN,Rihui CHEN,Jinjie PAN,Yanna TENG,Xingyue YONG. Organic/inorganic Compound Corrosion Inhibitor of L921A Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
No Suggested Reading articles found!