Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (5): 411-420    DOI: 10.11902/1005.4537.2016.147
Current Issue | Archive | Adv Search |
Effect of Nano-CeO2 on Anticorrosion Performance for Polyurethane Coating
Guangyi CAI1,Haowei WANG2,Weihang ZHAO1,Zehua DONG1()
1 Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2 AVIC Special Vehicle Research Institute, Jingmen 448000, China
Download:  HTML  PDF(1325KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Salt spray test and immersion test for two accelerated weathering tests were carried out to research the effects of nano-CeO2 as a pigment to the corrosion resistance of polyurethane coating. According to EIS, ATR-FTIR, SEM and AFM characterized and analyzed the performance and micromorphology change of coating. The results show that as a pigment nano-CeO2 could decrease the rate of resistance reduction of polyurethane coating. When the concentration of adding nano-CeO2 was less than 0.5%(mass fraction), the EIS impedance spectrum dropped rapidly with acceleration time elapsed due to the electrolyte and H2O penetration into coating quickly and nano-CeO2 hydrolysis. While the corrosion resistance get markedly changed and maintained high impedance for a long time of the coating with additive 1.0% nano-CeO2. This phenomenon may be due to CeO2 hydrolysis in coating micro crack, reduced the pore channel, and Ce(III, IV) migrated to the Al alloy/coating interface, inhibiting the corrosion of active site, thus decreasing the attenuation process of impedance. At the later stage of salt spray test, CeO2 further hydrolysis leaded to Ce ions dissolution erosion, which caused micro cracks expansion again and coating impedance reducing quickly. When the addition of nano-CeO2 excessed 1.0% would weaken the adhesion of coating on aluminum alloy matrix. Long time immersion test showed that 1.0% of nano-CeO2 could achieve balance of Ce ions dissolution and migration, and increased the anticorrosion performance of PU coating.

Key words:  coating      nano-CeO2      EIS      anticorrosion performance      AFM     
Received:  08 September 2016     
Fund: Supported by National Natural Science Foundation of China (51371087)

Cite this article: 

Guangyi CAI,Haowei WANG,Weihang ZHAO,Zehua DONG. Effect of Nano-CeO2 on Anticorrosion Performance for Polyurethane Coating. Journal of Chinese Society for Corrosion and protection, 2017, 37(5): 411-420.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.147     OR     https://www.jcscp.org/EN/Y2017/V37/I5/411

Fig.1  EIS of the polyurethane coatings with different contents of CeO2 nanoparticles in 3.5%NaCl solution
Fig.2  Variations of the resistance and capacitance of the modified polyurethane coatings with the adding concentration of nano-CeO2 (a) and equivalent circuit models of coatings (b)
Fig.3  Nyquist plots of the polyurethane coatings with 0% (a), 0.125% (b), 0.25% (c), 0.5% (d), 1.0% (e) and 2.0% (f) nano-CeO2 after immersion in 3.5%NaCl solution for different time
Fig.4  Equivalent circuit models of the coatings at early stage (a), middle stage (b) and later stage (c)
Fig.5  Variations of |Z0.01 Hz| of the different coatings with immersion time in 3.5%NaCl solution
Fig.6  Nyquist plots of the coatings with 0% (a), 0.125% (b), 0.25% (c), 0.5% (d), 1.0% (e) and 2.0% (f) nano-CeO2 after salt spray test for different time
Fig.7  Variations of |Z0.01 Hz| for the different coatings during salt spray test
Fig.8  FT-IR spectra of the coatings with 0% (a), 0.125% (b), 0.25% (c), 0.5% (d), 1.0% (e) and 2.0% (f) nano-CeO2
Fig.9  Schematic diagrams of inhibitive mechanism of CeO2 in polyurethane coating
Fig.10  AFM phase images of the polyurethane coating (a) and coatings containing 0.125% (b), 0.25% (c), 0.5% (d), 1.0% (e) and 2.0% (f) nano-CeO2
Fig.11  Surface roughness of phase (a) and height (b) chan-ges of the different coatings after SST and immersion test
Fig.12  Optical images of the scratched coatings after spray test for 120 h with 0% (a), 0.125% (b), 0.25%(c), 0.5% (d), 1.0% (e) and 2.0% (f) nano-CeO2
Fig.13  SEM images of the polyurethane coatings with 0% (a, c) and 1.0% nano-CeO2 (b, d) before (a, b) and after (c, d) 158 h immersion test, respectively
Fig.14  EDS analysis results of the polyurethane coating with 1.0% nano-CeO2 after immersion for 1 h (a) and 158 h (b)
[1] Liu S, Sun H Y, Sun L J, et al.Effects of pH and Cl- concentration on corrosion behavior of the galvanized steel in simulated rust layer solution[J]. Corros. Sci., 2012, 65: 520
[2] Cheng W, Zhou Y, Gu H S, et al.Research & development progress of environmentally friendly corrosion inhibitors[J]. Corros. Prot. Petrochem. Ind., 2015, 32(3): 9
[2] (程伟, 周扬, 古华山等. 环境友好型缓蚀剂的研究进展[J]. 石油化工腐蚀与防护, 2015, 32(3): 9)
[3] Zhang D Q, Gao L X, Zhou G D.Recent progress and prospect for corrosion inhibitor science and technology[J]. Corros. Prot., 2009, 30: 604
[3] (张大全, 高立新, 周国定. 国内外缓蚀剂研究开发与展望[J]. 腐蚀与防护, 2009, 30: 604)
[4] Zhang Y X.Applied research development of evaluating anti-corrosion performance of organic coatings by EIS[J]. Contemp. Chem. Ind., 2007, 36: 516
[4] (张玉玺. EIS法评价有机涂层耐蚀性能的应用研究进展 [J]. 当代化工, 2007, 36: 516)
[5] Montemor M F, Snihirova D V, Taryba M G, et al.Evaluation of self-healing ability in protective coatings modified with combinations of layered double hydroxides and cerium molibdate nanocontainers filled with corrosion inhibitors[J]. Electrochim. Acta, 2012, 60: 31
[6] Nguyen A S, Musiani M, Orazem M E, et al.Impedance study of the influence of chromates on the properties of waterborne coatings deposited on 2024 aluminium alloy[J]. Corros. Sci., 2016, 109: 174
[7] Ilman M N.Chromate inhibition of environmentally assisted fatigue crack propagation of aluminium alloy AA 2024-T3 in 3.5%NaCl solution[J]. Int. J. Fatigue, 2014, 62: 228
[8] Aramaki K.The inhibition effects of chromate-free anion inhibitors on corrosion of zinc in aerated 0.5 M NaCl[J]. Corros. Sci., 2001, 43: 591
[9] Zhang M L, Zhao J M.Research progress of synergistic inhibition effect and mechanism[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 1
[9] (张漫路, 赵景茂. 缓蚀剂协同效应与协同机理的研究进展[J]. 中国腐蚀与防护学报, 2016, 36: 1)
[10] Do?ru Mert B.Corrosion protection of aluminum by electrochemically synthesized composite organic coating[J]. Corros. Sci., 2016, 103: 88
[11] Yoganandan G, Pradeep Premkumar K, Balaraju J N.Evaluation of corrosion resistance and self-healing behavior of zirconium-cerium conversion coating developed on AA2024 alloy[J]. Surface Coat. Technol., 2015, 270: 249
[12] Xiao W, Miao C, Huang X, et al.Effect of cerium ion (III) on corrosion resistance of organic-inorganic hybrid coating on surface of aluminum-tube used in refrigeration equipment[J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 3847
[13] Jiang M Y, Wu L K, Hu J M, et al.Silane-incorporated epoxy coatings on aluminum alloy (AA2024). Part 1: Improved corrosion performance[J]. Corros. Sci., 2015, 92: 118
[14] Jiang M Y, Wu L K, Hu J M, et al.Silane-incorporated epoxy coatings on aluminum alloy (AA2024). Part 2: Mechanistic investigations[J]. Corros. Sci., 2015, 92: 127
[15] Liu Y W, Zhou X R, Lyon S B, et al.An organic coating pigmented with strontium aluminium polyphosphate for corrosion protection of zinc alloy coated steel[J]. Prog. Org. Coat., 2017, 102: 29
[16] Rostami M, Rasouli S, Ramezanzadeh B, et al.Electrochemical investigation of the properties of Co doped ZnO nanoparticle as a corrosion inhibitive pigment for modifying corrosion resistance of the epoxy coating[J]. Corros. Sci., 2014, 88: 387
[17] Hao J L, Gao Y J, Dong Z H.Effects of siloxane sulfide and cerium salt complex conversion film on corrosion resistance of aluminum alloy[J]. J. Chin. Soc. Corros. Prot., 2015, 35: 525
[17] (郝敬丽, 高永晶, 董泽华. 硅氧烷硫化物与铈盐复合膜对铝合金耐点蚀能力的影响[J]. 中国腐蚀与防护学报, 2015, 35: 525)
[18] Cong S H, Hou Q.Corrosion resistance performance of epoxy Zn-Al-Mg-Ce riched alloy coating[J]. Chin. Surface Eng., 2010, 23(1): 57
[18] (从善海, 侯强. 环氧富Zn-Al-Mg-Ce合金涂层耐腐蚀性能[J]. 中国表面工程, 2010, 23(1): 57)
[19] Cotting F, Aoki I V.Smart protection provided by epoxy clear coating doped with polystyrene microcapsules containing silanol and Ce (III) ions as corrosion inhibitors[J]. Surface Coat. Technol., 2016, 303: 310
[20] Pan T J, Wang T.Corrosion performance and preparation of polyaniline film on the surface of AZ91 magnesium alloy[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 489
[20] (潘太军, 汪涛. AZ91镁合金表面合成聚苯胺涂层及其腐蚀性能研究[J]. 中国腐蚀与防护学报, 2014, 34: 489)
[21] Zhang W, Wang J, Zhao Z Y, et al.EIS study on the deterioration process of organic coatings under immersion and cyclic wet-dry conditions[J]. J. Chin. Soc. Corros. Prot., 2011, 31: 329
[21] (张伟, 王佳, 赵增元等. 电化学阻抗谱对比研究连续浸泡和干湿循环条件下有机涂层的劣化过程[J]. 中国腐蚀与防护学报, 2011, 31: 329)
[22] Su J X, Bai Y, Guan Q F, et al.Electrochemical impedance spectroscopy analysis of failure of aircraft surface coating[J]. J. Chin. Soc. Corros. Prot., 2013, 33: 251
[22] (苏景新, 白云, 关庆丰等. 飞机蒙皮结构表面涂层失效的电化学阻抗分析[J]. 中国腐蚀与防护学报, 2013, 33: 251)
[23] Zuo Y, Pang R, Li W, et al.The evaluation of coating performance by the variations of phase angles in middle and high frequency domains of EIS[J]. Corros. Sci., 2008, 50: 3322
[24] Zhao Z Y, Wang J.Progress in cathodic delamination of organic coatings from metals[J]. J. Chin. Soc. Corros. Prot., 2008, 28: 116
[24] (赵增元, 王佳. 有机涂层阴极剥离作用研究进展[J]. 中国腐蚀与防护学报, 2008, 28: 116)
[25] Sharmila R, Selvakumar N, Jeyasubramanian K.Evaluation of corrosion inhibition in mild steel using cerium oxide nanoparticles[J]. Mater. Lett., 2013, 91: 78
[26] Yang X F, Tallman D E, Croll S G, et al.Morphological changes in polyurethane coatings on exposure to water[J]. Polym. Degrad. Stabil., 2002, 77: 391
[1] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] REN Yan, QIAN Yuhai, ZHANG Xintao, XU Jingjun, ZUO Jun, LI Meishuan. Effect of Thermal Shock on Mechanical Properties of Siliconized Graphite with ZrB2-SiC-La2O3/SiC Coating[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[3] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[4] LIU Yang, WU Jinyi, YAN Xiaoyu, CHAI Ke. Effect of Bacillus flexus on Degradation of Polyurethane Varnish Coating in Marine Environment[J]. 中国腐蚀与防护学报, 2021, 41(1): 36-42.
[5] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[6] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[7] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[8] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[9] SUN Shuo, YANG Jie, QIAN Xinzhu, CHANG Renli. Preparation and Electrochemical Corrosion Behavior of Electroless Plated Ni-Cr-P Alloy Coating[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[10] CAO Jingyi, WANG Zhiqiao, LI Liang, MENG Fandi, LIU Li, WANG Fuhui. Failure Mechanism of Organic Coating with Modified Graphene Under Simulated Deep-sea Alternating Hydrostatic Pressure[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
[11] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[12] YANG Yinchu,FU Xiuqing,LIU Lin,MA Wenke,SHEN Moqi. Electrochemical Corrosion of Ni-P-BN(h)-Al2O3 Composite Coating Deposited by Spray Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[13] ZHAO Shuyan,TONG Xinhong,LIU Fuchun,WENG Jinyu,HAN En-Hou,LI Xiaohui,YANG Lin. Corrosion Resistance of Three Zinc-rich Epoxy Coatings[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[14] WANG Guirong,ZHENG Hongpeng,CAI Huayang,SHAO Yawei,WANG Yanqiu,MENG Guozhe,LIU Bin. Failure Process of Epoxy Coating Subjected Test of Alternating Immersion in Artificial Seawater and Dry in Air[J]. 中国腐蚀与防护学报, 2019, 39(6): 571-580.
[15] YU Chuntang,YANG Yingfei,BAO Zebin,ZHU Shenglong. Research Progress in Preparation and Development of Excellent Bond Coats for Advanced Thermal Barrier Coatings[J]. 中国腐蚀与防护学报, 2019, 39(5): 395-403.
No Suggested Reading articles found!