Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (1): 38-44    DOI: 10.11902/1005.4537.2019.040
Current Issue | Archive | Adv Search |
Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating
SHI Chao1,2,SHAO Yawei2(),XIONG Yi1,LIU Guangming1,YU Yuelong1,YANG Zhiguang1,XU Chuanqin1
1. College of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
2. Materials Science and Chemical Engineering College, Harbin Engineering University, Harbin 150001, China
Download:  HTML  PDF(5089KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The submicron-sheet zinc phosphate (SZP) was modified with silane coupling agent (KH560), and then the modified zinc phosphate (KH560-SZP) was characterized by FT-IR, SEM and EDS. Dispersion statuses of SZP and KH560-SZP, as pigments in epoxy coating were comparatively analyzed by SEM. Then, corrosion resistance of epoxy coatings with SZP and KH560-SZP respectively were assessed via EIS, adhesion test and surface morphology observation. The results showed that KH560-SZP, as a pigment coated with cross-linking silane polymer could be dispersed effectively into the epoxy resins. Thus, the barrier performances and adhesion of the coatings were significantly improved. Consequentially, the anti-corrosion performance of the coating was comprehensively improved because due to the addition of the silane coupling agent modified zinc phosphate.

Key words:  silane coupling agent      modified zinc phosphate      epoxy coating      corrosion resistance      interfacial state     
Received:  25 March 2019     
ZTFLH:  TG174.46  
Fund: National Key R&D Program of China(2016YFB0300604);International S&T Cooperation Program of China(2014DFR50560);Scientific Research Foundation for Doctor(EA201901056)
Corresponding Authors:  Yawei SHAO     E-mail:  shaoyawei@hrbeu.edu.cn

Cite this article: 

SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating. Journal of Chinese Society for Corrosion and protection, 2020, 40(1): 38-44.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.040     OR     https://www.jcscp.org/EN/Y2020/V40/I1/38

Fig.1  FT-IR spectra of SZP and KH560-SZP pigments
Fig. 2  Micro-morphologies (a, c) and EDS results (b, d) of SZP (a, b) and KH560-SZP pigments (c, d)
PigmentSiOPZn
SZP065.4815.9118.32
KH560-SZP5.0562.2414.1518.56
Table 1  Contents of main elements in SZP pigment and KH560-SZP pigment (atomic fraction / %)
Fig.3  Dispersion statuses of SZP (a) and KH560-SZP (b) pigments in the resin substrates of the coatings
Fig.4  Equivalent electrical circuits of the coating/steel system after immersion for different time: (a) one time constant, (b) two time constants with Warburg impedance, (c) two time constants without Warburg impedance
Fig.5  Bode (a, b) and Nyquist (c, d) plots of the resin coatings with SZP (a, c) and KH560-SZP (b, d) after immersion for different time
Fig.6  Variations of Rc of SZP coating and KH560-SZP coating with immersion time
Fig.7  Variations of Rt of SZP coating and KH560-SZP coating with immersion time
Fig.8  Adhesion strengths of SZP coating and KH560-SZP coating after immersion for different time
Fig.9  Macroscopic surface morphologies of SZP (a, b) and KH560-SZP (c, d) coatings after 700 h immersion (a, c) and pull-off test (b, d)
[1] Shang C J, Li X C, Xie Z J. Development of high performance steel for marine engineering [J]. Angang Technol., 2018, (1): 1
[1] (尚成嘉, 李秀程, 谢振家. 高性能海洋工程用钢的智慧研发之一 [J]. 鞍钢技术, 2018, (1): 1)
[2] Shi C. The synthesis of submicron-sheet zinc phosphate and its influence on anti-corrosion performance of epoxy coating [D]. Harbin Engineering University, 2018
[2] (师超. 微纳米片状磷酸锌的制备及其对环氧涂层防腐性能的影响 [D]. 哈尔滨工程大学, 2018)
[3] Bhoge Y E, Patil V J, Deshpande T D, et al. Synthesis and anticorrosive performance evaluation of zinc vanadate pigment [J]. Vacuum, 2017, 145: 290
[4] Deyá C, Blustein G, Del Amo B, et al. Evaluation of eco-friendly anticorrosive pigments for paints in service conditions [J]. Prog. Org. Coat., 2010, 69: 1
[5] Langer E, Kuczyńska H, Kamińska-Tarnawska E, et al. Self-stratifying coatings containing barrier and active anticorrosive pigments [J]. Prog. Org. Coat., 2011, 71: 162
[6] Naderi R, Mahdavian M, Darvish A. Electrochemical examining behavior of epoxy coating incorporating zinc-free phosphate-based anticorrosion pigment [J]. Prog. Org. Coat., 2013, 76: 302
[7] Heydarpour M R, Zarrabi A, Attar M M, et al. Studying the corrosion protection properties of an epoxy coating containing different mixtures of strontium aluminum polyphosphate (SAPP) and zinc aluminum phosphate (ZPA) pigments [J]. Prog. Org. Coat., 2014, 77: 160
[8] Shi Q M, Shao Y W, Zhang T, et al. Protection dimension of scratched zinc phosphate/epoxy coating [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 389
[8] (石秋梅, 邵亚薇, 张涛等. 磷酸锌对环氧涂层划痕的保护尺寸研究 [J]. 中国腐蚀与防护学报, 2011, 31: 389)
[9] Pang R, Zuo Y, Tang Y M, et al. Failure behaviors of epoxy/acrylic polyurethane organic coatings in corrosive media by EIS [J]. CIESC J., 2010, 61: 2656
[9] (庞然, 左禹, 唐聿明等. 环氧/聚氨酯涂层在4种环境中失效行为的EIS [J]. 化工学报, 2010, 61: 2656)
[10] Cao J, Shao Y W, Zhang T, et al. Roles of zinc phosphate on the corrosion of the scratched epoxy coating [J]. J. Chin. Soc. Corros. Prot., 2009, 29: 437
[10] (曹佳, 邵亚薇, 张涛等. 磷酸锌对环氧涂层破损处金属的缓蚀作用 [J]. 中国腐蚀与防护学报, 2009, 29: 437)
[11] Yu H W, Yang S S, Ruan H M, et al. Recovery of uranium ions from simulated seawater with palygorskite/amidoxime polyacrylonitrile composite [J]. Appl. Clay Sci., 2015, 111: 67
[12] Li X X, Zheng B Y, Xu L M, et al. Study on properties of conductive adhesive prepared with silver nanoparticles modified by silane coupling agent [J]. Rare Met. Mater. Eng., 2012, 41: 24
[13] Yan S P, He W, Sun C Y, et al. The biomimetic synthesis of zinc phosphate nanoparticles [J]. Dyes Pigments, 2009, 80: 254
[14] Yuan A Q, Liao S, Tong Z F, et al. Synthesis of nanoparticle zinc phosphate dihydrate by solid state reaction at room temperature and its thermochemical study [J]. Mater. Lett., 2006, 60: 2110
[15] Zhang Y J, Shao Y W, Liu X L, et al. A study on corrosion protection of different polyaniline coatings for mild steel [J]. Prog. Org. Coat., 2017, 111: 240
[16] Zhang Y J, Shao Y W, Zhang T, et al. The effect of epoxy coating containing emeraldine base and hydrofluoric acid doped polyaniline on the corrosion protection of Az91d magnesium alloy [J]. Corros. Sci., 2011, 53: 3747
[17] Gupta G, Birbilis N, Cook A B, et al. Polyaniline-lignosulfonate/epoxy coating for corrosion protection of Aa2024-T3 [J]. Corros. Sci., 2013, 67: 256
[1] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[4] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[5] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[6] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[7] WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[8] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[9] YANG Yinchu,FU Xiuqing,LIU Lin,MA Wenke,SHEN Moqi. Electrochemical Corrosion of Ni-P-BN(h)-Al2O3 Composite Coating Deposited by Spray Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[10] ZHAO Shuyan,TONG Xinhong,LIU Fuchun,WENG Jinyu,HAN En-Hou,LI Xiaohui,YANG Lin. Corrosion Resistance of Three Zinc-rich Epoxy Coatings[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[11] WANG Guirong,ZHENG Hongpeng,CAI Huayang,SHAO Yawei,WANG Yanqiu,MENG Guozhe,LIU Bin. Failure Process of Epoxy Coating Subjected Test of Alternating Immersion in Artificial Seawater and Dry in Air[J]. 中国腐蚀与防护学报, 2019, 39(6): 571-580.
[12] XIAO Jintao,CHEN Yan,XING Mingxiu,JU Pengfei,MENG Yingen,WANG Fang. Effect of Process Parameters on Corrosion Resistance of Anodizing Film on 2195 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[13] SHI Kunyu,ZHANG Jinzhong,ZHANG Yi,WAN Yi. Preparation and Corrosion Resistance of Nb2N Coating on TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[14] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[15] Guirong WANG,Yawei SHAO,Yanqiu WANG,Guozhe MENG,Bin LIU. Effect of Applied Cathodic Protection Potential on Cathodic Delamination of Damaged Epoxy Coating[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
No Suggested Reading articles found!