Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (5): 421-427    DOI: 10.11902/1005.4537.2016.174
Current Issue | Archive | Adv Search |
Corrosion Performance of Oxide Scales on Bronze QSn7-0.2 Anode in Molten Carbonates
Kaifa DU,Bin WANG,Fuxing GAN,Dihua WANG()
International Cooperation Base for Sustainable Utilization of Resources and Energy in Hubei Province, School of Resource and Environmental Science, Wuhan University, Wuhan 430072, China
Download:  HTML  PDF(1032KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Three different oxide scales on the surface of bronze QSn7-0.2 electrodes were prepared in Li-Na-K eutectic molten carbonates at 450°C via potentiodynamic polarization, potentiostatic polarization by 0.2 V and simple immersion by open circuit potential respectively, then were characterized by means of optical microscopy and X-ray diffractometer (XRD). While the feasibility of which as potential inert anode for electrochemical transformation of CO2 was assessed in the melt by electrochemical method. The result shows that besides Cu2O and CuO, SnO2 is detected in the oxide scales of the bronze QSn7-0.2 electrodes oxidized via potentiostatic polarization by 0.2 V and simple immersion by open circuit potential. The oxide scales with SnO2 can significantly prevent the bronze QSn7-0.2 anodes from corrosion and act also as electro-catalyzer for the oxygen evolution.

Key words:  Cu-Sn alloy      molten carbonate      oxidation film      passivation      protection performance     
Received:  22 September 2016     
Fund: Supported by National Natural Science Foundation of China (51325102, 21673162) and International Science & Technology Cooperation Program of China (2015DFA90750)

Cite this article: 

Kaifa DU,Bin WANG,Fuxing GAN,Dihua WANG. Corrosion Performance of Oxide Scales on Bronze QSn7-0.2 Anode in Molten Carbonates. Journal of Chinese Society for Corrosion and protection, 2017, 37(5): 421-427.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.174     OR     https://www.jcscp.org/EN/Y2017/V37/I5/421

Fig.1  Schematic diagram of the experimental set-up
Fig.2  Anodic polarization curves of QSn7-0.2, T2 and Pt (a) electrodes in molten Li2CO3-Na2CO3-K2CO3 at 450 ℃ in Ar and the consecutive anodic polarization curves of QSn7-0.2 (b) (the scan rate was 5 mV/s)
Fig.3  Macro photo of QSn7-0.2 electrode before and after anodic polarization (a), optical micrograph (b) and XRD pattern (c) of QSn7-0.2 electrode after anodic polarization in molten Li2CO3-Na2CO3-K2CO3 at 450 ℃ in Ar
Fig.4  Macro photo (a) and XRD pattern (b) of the reduction products on the counter electrode during the anodic polarization of QSn7-0.2 electrode in molten Li2CO3-Na2CO3-K2CO3 at 450 ℃ in Ar
Fig.5  Potentiostatic electrolysis curve of QSn7-0.2 electrode at a constant potential of 0.2 V for 20 h (a) and its anodic polarization curves before and after potentiostatic electrolysis in molten Li2CO3-Na2CO3-K2CO3 at 450 ℃ in Ar (b)
Fig.6  Macro photo of QSn7-0.2 electrode before and after potentiostatic electrolysis (a), optical micrograph (b) and XRD pattern (c) of QSn7-0.2 electrode after polarization for 20 h at 0.2 V in molten Li2CO3-Na2CO3-K2CO3 at 450 ℃ in Ar
Fig.7  OCP evolution curves of T2 and QSn7-0.2 electrodes during immersion in molten carbonates for 170 h at 450 ℃ in air (a) and anodic polarization cu-rves of the QSn7-0.2 before and after immersion in molten Li2CO3-Na2CO3-K2CO3 at 450 ℃ in Ar (the scan rate was 5 mV/s)
[1] Allanore A.Features and challenges of molten oxide electrolytes for metal extraction[J]. J. Electrochem. Soc., 2015, 162: E13
[2] Cheng X H, Tang D Y, Tang D D, et al.Cobalt powder production by electro-reduction of Co3O4 granules in molten carbonates using an inert anode[J]. J. Electrochem. Soc., 2015, 162: E68
[3] Yin H Y, Mao X H, Tang D Y, et al.Capture and electrochemical conversion of CO2 to value-added carbon and oxygen by molten salt electrolysis[J]. Energy Environ. Sci., 2013, 6: 1538
[4] Xu Y X, Zeng C L.Corrosion of materials for molten salt reactor[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 211
[4] (徐雅欣, 曾潮流. 熔盐电堆的材料腐蚀[J]. 中国腐蚀与防护学报, 2014, 34: 211)
[5] Wang Z G, Huang W, Lai Y Q.New progress of inert anode materials for aluminum electrolysis[J]. Light Met., 2007, (2): 27
[5] (王志刚, 黄蔚, 赖延清. 铝电解惰性阳极材料研究新进展[J]. 轻金属, 2007, (2): 27)
[6] Qiu Z X.Research and development of inert cathode and anode in aluminium electrolysis[J]. Light Met., 2001, (9): 30
[6] (邱竹贤. 铝工业应用新型电极材料的研究[J]. 轻金属, 2001, (9): 30)
[7] Sadoway D R.Inert anodes for the hall-héroult cell: The ultimate materials challenge[J]. JOM, 2001, 53(5): 34
[8] Ding H Y, Lu S G, Kan S R, et al.Progress in metal inert anode of aluminium electrolysis[J]. Chin. J. Rare Met., 2009, 33: 420
[8] (丁海洋, 卢世刚, 阚素荣等. 铝电解用金属惰性阳极的研究进展[J]. 稀有金属, 2009, 33: 420)
[9] Khramov А P, Kovrov V А, Zaikov Y P, et al.Anodic behaviour of the Cu82Al8Ni5Fe5 alloy in low-temperature aluminium electrolysis[J]. Corros. Sci., 2013, 70: 194
[10] Shi Z N, Xu J L, Qiu Z X.Copper-nickel superalloys as inert alloy anodes for aluminum electrolysis[J]. JOM, 2003, 55(11): 63
[11] Zeng C L, Zhang J Q, Wu W T.Electrochemistry of corrosion in molten salts[J]. Corros. Sci. Prot. Technol., 1992, 4: 16
[11] (曾潮流, 张鉴清, 吴维?. 熔盐腐蚀电化学[J]. 腐蚀科学与防护技术, 1992, 4: 16)
[12] Zeng C L, Zhang J Q, Wu W T.Monitoring of cracking of oxide film during hot corrosion[J]. J. Chin. Soc. Corros. Prot., 1993, 13: 59
[12] (曾潮流, 张鉴清, 吴维?. 熔盐腐蚀过程中氧化膜破裂的监测[J]. 中国腐蚀与防护学报, 1993, 13: 59)
[13] Le Van K, Groult H, Lantelme F, et al.Electrochemical formation of carbon nano-powders with various porosities in molten alkali carbonates[J]. Electrochim. Acta, 2009, 54: 4566
[14] Zhang J Q, Niu Y, Wu W T.Electrochemical evaluation of corrosion resistance of metals and alloys in molten salts-polarization curve fitting[J]. J. Chin. Soc. Corros. Prot., 1990, 10: 207
[14] (张鉴清, 牛焱, 吴维?. 金属熔盐腐蚀的电化学评定方法——极化曲线拟合法[J]. 中国腐蚀与防护学报, 1990, 10: 207)
[15] Wang W, Zeng C L, Wu W T, et al.A study of hot corrosion behavior of Cu in molten (Li, K)2CO3[J]. Acta Metall. Sin., 1999, 35: 623
[15] (王文, 曾潮流, 吴维?等. Cu在熔融(Li, K)2CO3中的热腐蚀行为研究[J]. 金属学报, 1999, 35: 623)
[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] HE Zhuang,WANG Xingping,LIU Zihan,SHENG Yaoquan,MI Mengxin,CHEN Lin,ZHANG Yan,LI Yuchun. Passivation and Pitting of 316L and HR-2 Stainless Steel in Hydrochloric Acid Liquid Membrane Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[3] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[4] Han FENG,Zhigang SONG,Xiaohan WU,Hui LI,Wenjie ZHENG,Yuliang ZHU. Relationship Between Selective Corrosion Behavior and Duplex Structure of 022Cr25Ni7Mo4N Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(2): 138-144.
[5] Jiulong SONG, Wenge CHEN, Nannan LEI. Passivation of T2 Cu and QCr0.5 Cu-alloy with Chromate-free Solutions of Molybdate Compound[J]. 中国腐蚀与防护学报, 2018, 38(2): 210-218.
[6] Han YAN, Qing ZHAO, Nan DU, Yanqing HU, Liqiang WANG, Shuaixing WANG. Formation Process and Corrosion Resistance of Trivalent Chromium Passivation Film on Zn-plated Q235 Steel[J]. 中国腐蚀与防护学报, 2017, 37(6): 547-553.
[7] Yanliang WANG,Xu CHEN,Jidong WANG,Bo SONG,Dongsheng FAN,Chuan HE. Electrochemical Behavior of 316L Stainless Steel in Borate Buffer Solution with Different pH[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.
[8] Xinqiang WU,Yao FU,Wei KE,Song XU,Bing FENG,Botao HU,Jiazheng LU. Corrosion Behavior of High Nitrogen Austenitic Stainless Steels[J]. 中国腐蚀与防护学报, 2016, 36(3): 197-204.
[9] Xiangnan MENG,Xu CHEN,Ming WU,Yang ZHAO,Yuwen FAN. Effect of Hydrostatic Pressure on Electrochemical Behavior of X100 Steel in NaHCO3+NaCl Solution[J]. 中国腐蚀与防护学报, 2016, 36(3): 219-224.
[10] Chao XIANG,Jiazhen WANG,Huameng FU,En-Hou HAN,Haifeng ZHANG,Jianqiu WANG,Zhiming ZHANG. Corrosion Behavior of Several High-entropy Alloys in High Temperature High Pressure Water[J]. 中国腐蚀与防护学报, 2016, 36(2): 107-112.
[11] Yuanjin LI,Xinying LU. Influence of Mill Scale on Prepassivation of Rebar[J]. 中国腐蚀与防护学报, 2015, 35(4): 359-364.
[12] HE Jin, YAN Minsheng, YANG Lijing, Masoumeh Moradi, SONG Zhenlun, JIANG Yehua. Electrochemical Corrosion and Critical Pitting Temperature of S32750 Super Duplex Stainless Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2015, 35(2): 106-112.
[13] CHENG Xudong, SUN Lianfang, CAO Zhifeng, ZHU Xingji, ZHAO Lixin. Numerical Simulation of Chloride Ion Induced Corrosion of Reinforced Concrete Structures in Marine Environment[J]. 中国腐蚀与防护学报, 2015, 35(2): 144-150.
[14] ZHOU Xin, CHEN Ren, YANG Huaiyu, WANG Fuhui. Effect of Pentaerythritol Glycoside on Performance of Passive Film Formed on Steel Rebar in Saturated Ca(OH)2 Solution Containing 3.5%NaCl[J]. 中国腐蚀与防护学报, 2014, 34(2): 125-130.
[15] LI Junfeng, WEN Jiuba, HE Junguang, MA Jingling, LI Gaolin. MECHANISM OF PITTING CORROSION ACTIVATION AND PASSIVATION OF Al-Zn-Sn-Ga ALLOY[J]. 中国腐蚀与防护学报, 2012, 32(5): 407-411.
No Suggested Reading articles found!