Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (1): 57-62    DOI: 10.11902/1005.4537.2019.223
Current Issue | Archive | Adv Search |
Electrochemical Corrosion of Ni-P-BN(h)-Al2O3 Composite Coating Deposited by Spray Electrodeposition
YANG Yinchu1,FU Xiuqing1,2(),LIU Lin1,MA Wenke1,SHEN Moqi1
1. College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
2. Key Laboratory of Intelligence Agricultural Equipment of Jiangsu Province,Nanjing 210031, China
Download:  HTML  PDF(2642KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ni-P-BN(h)-Al2O3 composite coating was prepared on the surface of 45 steel parts by spray electrodeposition technology. The surface morphology of thecomposite coating was characterized by scanning electron microscopy (SEM). The corrosion resistance of the composite coating was studied by electrochemical workstation. Results showed that with the increase of the applied voltage within arrange of 22~28 V, the corrosion resistance of the composite coating was enhanced at first and then decreased. Among others, the composite coating deposited at voltage of 25 V presented the best corrosion resistance. While the corrosion resistance of the composite coating was enhanced gradually with the increase of the gap from 1.6 mm to 2.0 mm between injection nozzle to the workpiece, and the composite coating had the best corrosion resistance when prepared with the gap of 2.0 mm.

Key words:  jet-electrodeposition      Ni-P-BN(h)-Al2O3 composite coating      corrosion resistance     
Received:  07 May 2019     
ZTFLH:  TG174.44  
Fund: National Innovation Training Program for College Students(20181037088);Nanjing Agricultural University Undergraduate Innovation Project Training Plan(1830B18)
Corresponding Authors:  Xiuqing FU     E-mail:  fuxiuqing@njau.edu.cn

Cite this article: 

YANG Yinchu,FU Xiuqing,LIU Lin,MA Wenke,SHEN Moqi. Electrochemical Corrosion of Ni-P-BN(h)-Al2O3 Composite Coating Deposited by Spray Electrodeposition. Journal of Chinese Society for Corrosion and protection, 2020, 40(1): 57-62.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.223     OR     https://www.jcscp.org/EN/Y2020/V40/I1/57

Fig.1  Spray-electrodeposition equipment
Fig.2  Surface morphologies of composite coatings with different injection voltages and different injection gaps: (a) 22 V, 1.6 mm; (b) 25 V, 1.6 mm; (c) 28 V, 1.6 mm; (d) 25 V, 1.8 mm; (e) 25 V, 2.0 mm
Injection parameterSelf corrosive current density / A·cm-2Self corrosive potential / VCorrosion rate mm·a-1
22 V, 1.6 mm1.4244×10-5-0.462860.1724
25 V, 1.6 mm8.9251×10-6-0.610290.1082
28 V, 1.6 mm2.0838×10-5-0.422530.2522
25 V, 1.8 mm5.3521×10-6-0.533990.0648
25 V, 2.0 mm2.5664×10-6-0.510470.0311
Table 1  Polarization curve analysis results of Ni-P-BN(h)-Al2O3 composite coating
Fig.3  Tafel curves of composite coatings with different injection voltages when the injection gap is 1.6 mm
Fig.4  Tafel curves of composite coatings with injection voltage of 25 V under different injection clearance conditions
Fig.5  Nyquist plot of impedance spectra at different injection voltages when the jet gap was 1.6 mm
Fig.6  Nyquist plot of impedance spectra for different jet clearances at a jet voltage of 25 V
Fig.7  Phase angle plot with different parameters of Ni-P-BN(h)-Al2O3 composite coating
Fig.8  Equivalent circuit for AC impedance spectroscopy of passive film
Injection parameterRsΩ·cm2CPE-TF·SP·cm-2CPE-PRpΩ·cm2
22 V, 1.6 mm6.5418.115×10-50.816283872
25 V, 1.6 mm4.4131.933×10-40.747255500
28 V, 1.6 mm6.6451.249×10-40.833305061
25 V, 1.8 mm5.1892.816×10-40.663375996
25 V, 2.0 mm9.4311.175×10-40.784296187
Table 2  Values of the elements in the equivalent circuit for AC impedance spectroscopy of passive films formed on 3 specimens
[1] Hu C M, He H L, Hu S S. A study on dynamic mechancial behaviors of 45 steel [J]. Explos. Shock Waves, 2003, 23: 188
[1] (胡昌明, 贺红亮, 胡时胜. 45号钢的动态力学性能研究 [J]. 爆炸与冲击, 2003, 23: 188)
[2] Zhang X Y, Kang M, Shao Y, et al. Process parameters optimization of electric plating Ni-P alloy coating [J]. Electromach. Mould, 2015, (4): 42
[2] (张欣颖, 康敏, 邵越等. 电喷镀镍磷合金镀层的工艺参数优化 [J]. 电加工与模具, 2015, (4): 42)
[3] Wang W, Song Y, Wang F R. Application of electroless Ni-P plating in furfural heat exchangers [J]. Petrochem. Corros. Prot., 1997, 14(1): 36
[3] (王巍, 宋义, 王凤荣. Ni-P化学镀层在糠醛换热器上的应用 [J]. 石油化工腐蚀与防护, 1997, 14(1): 36)
[4] Li F S. A study on Ni-P-BN(h) electroless composite coatings [D]. Harbin: Harbin Institute of Technology, 2010
[4] (李法顺. Ni-P-BN(h) 化学复合镀层研究 [D]. 哈尔滨: 哈尔滨工业大学, 2010)
[5] Qu Y P, Li D G. Study on the technology and properties of electroless Ni-P-Al2O3 [J]. Surf. Technol., 1999, 28(6): 3
[5] (曲彦平, 李德高. 化学镀Ni-P-Al2O3工艺及性能研究 [J]. 表面技术, 1999, 28(6): 3)
[6] Hao Y L, Yang W Z, Yin X S, et al. Effect of surfactants on the properties of electroless Ni-P-Al2O3 composite coatings [J]. Surf. Technol., 2016, 45(6): 15
[6] (郝亚莉, 杨文忠, 尹晓爽等. 表面活性剂对Ni-P-Al2O3复合镀层性能的影响 [J]. 表面技术, 2016, 45(6): 15)
[7] Hou Y. Corrosion resistance of Ni-P-Al2O3 coating prepared by ultrasonic-assisted electroless plating on magnesium alloy used for automobile [J]. Electroplat. Pollut. Control, 2018, 38(4): 34
[7] (侯勇. 汽车用镁合金超声波辅助化学镀Ni-P-Al2O3镀层的耐蚀性 [J]. 电镀与环保, 2018, 38(4): 34)
[8] Tan J, Gao Y L, Qian Y C, et al. Effect of working voltage on the surface topography and performance of jet-electrodeposition Ni coatings [J]. J. Acad. Armored Force Eng., 2009, 23(6): 80
[8] (谭俊, 高玉琳, 钱耀川等. 工作电压对喷射电沉积Ni镀层形貌及性能的影响 [J]. 装甲兵工程学院学报, 2009, 23(6): 80)
[9] Wang Y, Kang M. Anti-corrosion properties of Ni-P alloy coating prepared from jet electrodeposion [A]. National Academic Conference on Special Processing [C]. Nanjing, 2013: 52
[9] (王颖, 康敏. 电喷镀镍磷合金镀层的耐腐蚀性能 [A]. 第15届全国特种加工学术会议论文集 (下) [C]. 南京, 2013: 52)
[10] Yuan S P. IV. Concepts of electrode and polarization——Part II [J]. Electroplat. Finish., 2008, 27(10): 39
[10] (袁诗璞. 电极与极化的概念 (二) [J]. 电镀与涂饰, 2008, 27(10): 39)
[11] Luo J, Zhang Y, Zhong Q D, et al. Influence of grain size on corrosion resistant of commonly used metals [J]. Corros. Prot., 2012, 33: 349
[11] (罗检, 张勇, 钟庆东等. 晶粒度对一些常用金属耐腐蚀性能的影响 [J]. 腐蚀与防护, 2012, 33: 349)
[12] Deng X, Zhang K, Li X G, et al. Effect of yttrium on microstructure and property of pure magnesium [J]. Chin. J. Rare Met., 2012, 36: 25
[12] (邓霞, 张奎, 李兴刚等. 钇对纯镁的组织和性能的影响 [J]. 稀有金属, 2012, 36: 25)
[13] Yao Z Y, Xu H, Hou F, et al. Preparation and corrosion performance of electroless plated Ni-W-P coatings [J]. Corros. Sci. Prot. Technol., 2011, 23: 353
[13] (姚志燕, 徐宏, 侯峰等. 化学镀Ni-W-P合金工艺开发及其耐蚀性能 [J]. 腐蚀科学与防护技术, 2011, 23: 353)
[14] Liu Z D, Wang J L, Chen J S, et al. Experimental research of preparing porous metal nickel by jet-electrodeposition [J]. J. Mater. Sci. Eng., 2008, 26: 869
[14] (刘志东, 王景丽, 陈劲松等. 喷射电沉积多孔镍 [J]. 材料科学与工程学报, 2008, 26: 869)
[15] Wang H L, Dou Y, Fu Q, et al. Effect of SiC content in plating bath on performance of electroless plated Ni-P-SiC composite coatings on AZ91D magnesium alloy [J]. Corros. Sci. Prot. Technol., 2014, 26: 307
[15] (王慧龙, 窦勇, 傅强等. 镀液中SiC含量对化学镀Ni-P-SiC复合镀层结构和性能的影响 [J]. 腐蚀科学与防护技术, 2014, 26: 307)
[16] Elsener B, Crobu M, Scorciapino M A, et al. Electroless deposited Ni-P alloys: corrosion resistance mechanism [J]. J. Appl. Electrochem., 2008, 38: 1053
[17] Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd Ed. Beijing: Chemical Industry Press, 2008: 175
[17] (曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社, 2008: 175)
[18] Zhou H M, Hu X Y, Li J. Effect of nano-Al2O3 on corrosion resistance of Ni-P composite coating by electro-brush plating [J]. Surf. Technol., 2017, 46(7): 32
[18] (周宏明, 胡雪仪, 李荐. 纳米Al2O3对电刷镀Ni-P复合镀层耐蚀性能的影响 [J]. 表面技术, 2017, 46(7): 32)
[1] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[4] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[5] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[6] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[7] WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[8] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[9] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[10] XIAO Jintao,CHEN Yan,XING Mingxiu,JU Pengfei,MENG Yingen,WANG Fang. Effect of Process Parameters on Corrosion Resistance of Anodizing Film on 2195 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[11] SHI Kunyu,ZHANG Jinzhong,ZHANG Yi,WAN Yi. Preparation and Corrosion Resistance of Nb2N Coating on TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[12] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[13] Duoyun CHENG,Jinbin ZHAO,Bo LIU,Cheng JIANG,Xiaoqian FU,Xuequn CHENG. Corrosion Behavior of High Nickel and Conventional Weathering Steels Exposed to a Harsh Marine Atmospheric Environment at Maldives[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[14] Delin LAI,Gang KONG,Chunshan CHE. Effect of Sodium Silicate Sealing on Corrosion Resistance of TiO2Conversion Film on Hot-dip Galvanized[J]. 中国腐蚀与防护学报, 2018, 38(6): 607-614.
[15] Ming LIU,Xuequn CHENG,Xiaogang LI,Tianjian LU. Corrosion Resistance Mechanisms of Passive Films Formed on Low Alloy Rebar Steels in Liquor of Cement Extract[J]. 中国腐蚀与防护学报, 2018, 38(6): 558-564.
No Suggested Reading articles found!