Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (2): 107-112    DOI: 10.11902/1005.4537.2016.024
Orginal Article Current Issue | Archive | Adv Search |
Corrosion Behavior of Several High-entropy Alloys in High Temperature High Pressure Water
Chao XIANG1,2,Jiazhen WANG1,Huameng FU3,En-Hou HAN1(),Haifeng ZHANG3,Jianqiu WANG1,Zhiming ZHANG1
1. Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials and Metallurgy, Northeastern University, Shenyang 110004, China
3. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(1050KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Three high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mo0.1, AlCoCrFeNiSi0.1 and TaNbHfZrTi were prepared by arc melting. Their phase structure, microstructure and chemical composition were studied by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). A commercial alloy 690TT was used as the contrast material. The repassivation kinetics of the three high entropy alloys in high temperature pressurized water was investigated by means of electrochemical test. The results show that Co1.5CrFeNi1.5Ti0.5Mo0.1, AlCoCrFeNiSi0.1 and TaNbHfZrTi high entropy alloys are all composed of single phase. The crystallographic structure of Co1.5CrFeNi1.5Ti0.5Mo0.1 alloy is fcc, while that of the alloys AlCoCrFeNiSi0.1 and TaNbHfZrTi is bcc. The SEM results show that the Co1.5CrFeNi1.5Ti0.5Mo0.1 alloy showed a typical dendritic microstructure, of which the dendrite riches in Cr and Fe, but the interdendrite zone riches in Ti and Ni. There is no obvious element segregation observed in the AlCoCrFeNiSi0.1 alloy. The TaNbHfZrTi alloy also exhibited a dendritic microstucture, of which the dendrite riches in Ta and Nb, and the interdendrite zone riches in Hf, Zr and Ti. The repassivation rates of these four alloys in high-temperature pressurized water may be ranked as the following sequence: TaNbHfZrTi>Co1.5CrFeNi1.5Ti0.5Mo0.1>690TT>AlCoCrFeNiSi0.1.

Key words:  high-entropy alloy      high temperature high pressure water      corrosion      repassivation     

Cite this article: 

Chao XIANG,Jiazhen WANG,Huameng FU,En-Hou HAN,Haifeng ZHANG,Jianqiu WANG,Zhiming ZHANG. Corrosion Behavior of Several High-entropy Alloys in High Temperature High Pressure Water. Journal of Chinese Society for Corrosion and protection, 2016, 36(2): 107-112.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.024     OR     https://www.jcscp.org/EN/Y2016/V36/I2/107

Fig.1  XRD patterns of Co1.5CrFeNi1.5Ti0.5Mo0.1 (a),AlCoCrFeNiSi0.1 (b) and TaNbHfZrTi (c)alloys
Fig.2  SEM images of Co1.5CrFeNi1.5Ti0.5Mo0.1 (a), AlCoCrFeNiSi0.1 (b) and TaNbHfZrTi (c) alloys
Region Co Cr Fe Ni Ti Mo
Nominal 26.75 18.75 18.75 26.75 8.00 1.00
DR 26.82 19.28 20.46 26.52 5.83 1.09
ID 26.02 10.34 12.77 32.48 17.64 0.75
Table 1  Chemical compositions of Co1.5CrFeNi1.5Ti0.5Mo0.1alloy by EDS analysis (atomic fraction / %)
Fig.3  Potentiodynamic polarization curves for different materials in high temperature water at 300 ℃ (DO=100 μg/kg, scan rate=0.5 mV/s)
Region Al Co Cr Fe Ni Si
Nominal 19.60 19.60 19.60 19.60 19.60 2.00
A 20.34 19.49 18.54 20.10 19.64 1.90
B 18.44 19.81 20.39 21.66 18.18 1.53
C 16.56 20.36 21.01 21.13 18.21 2.73
Table 2  Chemical compositions of AlCoCrFeNiSi0.1 alloy by EDS analysis (atomic fraction / %)
Fig.4  Variations of transient current density of different materials during the scratching test in high temperature water with DO=100 μg/kg at 300 ℃
Region Ta Nb Hf Zr Ti
Nominal 20.00 20.00 20.00 20.00 20.00
DR 24.40 18.68 23.40 16.55 16.97
ID 14.94 15.32 24.58 24.38 20.78
Table 3  Chemical compositions of TaNbHfZrTi alloy by EDS analysis (atomic fraction / %)
Fig.5  Curves of transient current density I vs the reciprocal of charged density 1/Q for different materials in high temperature water with DO=100 μg/kg at 300 ℃
Fig.6  cBV values of different materials in high temperature water with DO=100 μg/kg at 300 ℃
[1] Yeh J W, Chen S K, Lin S J, et al.Nanostructured high entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Adv. Eng. Mater., 2004, 6: 299
[2] Liu Y, Li Y X, Chen X, et al.High-entropy alloy with multi-principal elements—state of the art[J]. Mater. Rev., 2006, 20: 4
[2] (刘源, 李言祥, 陈祥等. 多主元高熵合金研究进展[J]. 材料导报, 2006, 20: 4)
[3] Murty B S, Yeh J W, Ranganathan S.High-entropy Alloys[M]. London: Butterworth-Heinemann, 2014
[4] Chen Y Y, Duval T, Hung U D, et al.Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel[J]. Corros. Sci., 2005, 47: 2257
[5] Hsu Y J, Chiang W C, Wu J K.Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution[J]. Mater. Chem. Phys., 2005, 92: 112
[6] Chou Y L, Yeh J W, Shih H C.The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Moxin aqueous environments[J]. Corros. Sci., 2010, 52: 2571
[7] Liu Y, Cheng C, Shang J, et al.Oxidation behavior of high-entropy alloys AlxCoCrFeNi (x= 0.15, 0.4) in supercritical water and comparison with HR3C steel[J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 1341
[8] Bosch R W, Schepers B, Vankeerberghen M.Development of a scratch test in an autoclave for the measurement of repassivation kinetics of stainless steel in high temperature high pressure water[J]. Electrochim. Acta, 2004, 49: 3029
[9] Macdonald D D, Scott A C, Wentrcek P.External reference electrodes for use in high temperature aqueous systems[J]. J. Electrochem. Soc., 1979, 126: 908
[10] Senkov O N, Scott J M, Senkova S V, et al.Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy[J]. J. Alloy. Compd., 2011, 509: 6043
[11] Wang J, Han E-H, Wang J.The repassivation kinetics study of Alloy 800 in high-temperature pressurized water[J]. Electrochem. Commun., 2015, 60: 100
[12] Wang J, Li X, Wang J, et al.Development of a scratch electrode system in high temperature high pressure water[J]. Corros. Sci., 2015, 95: 125
[13] Cabrera N, Mott N F.Theory of the oxidation of metals[J]. Rep. Prog. Phys., 1949, 12: 163
[14] Burstein G T, Marshall P I.Growth of passivating films on scratched 304L stainless steel in alkaline solution[J]. Corros. Sci., 1983, 23: 125
[15] Cho E A, Kim C K, Kim J S, et al.Quantitative analysis of repassivation kinetics of ferritic stainless steels based on the high field ion conduction model[J]. Electrochim. Acta, 2000, 45: 1933
[16] Ahn S, Shankar Rao V, Kwon H, et al.Effects of PbO on the repassivation kinetics of alloy 690[J]. Corros. Sci., 2006, 48: 1137
[17] Kwon H S, Cho E A, Yeom K A.Prediction of stress corrosion cracking susceptibility of stainless steels based on repassivation kinetics[J]. Corrosion, 2000, 56: 32
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[10] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[11] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[12] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[14] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!