Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (2): 113-120    DOI: 10.11902/1005.4537.2015.032
Orginal Article Current Issue | Archive | Adv Search |
Effect of Temperature on Electrochemical Behavior of Alloy 690 in Simulated PWR Secondary Circuit Water
Jiamei WANG1,Hui LU1,Zhengang DUAN1,Lefu ZHANG1(),Fanjiang MENG2,Xuelian XU2
1. School of Nuclear Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China
2. Shanghai Nuclear Engineering Research &Design Institute, Shanghai 200233, China
Download:  HTML  PDF(1409KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of temperature (150~285 ℃) on the electrochemical corrosion behavior of Alloy 690 in stimulated pressurized water reactor (PWR) secondary circuit water environments was investigated by means of EIS, potentiodynamic polarization curves, SEM with EDS and XPS. The results revealed that, with the increasing temperature, the free corrosion potential decreased, corrosion current density increased, passive potential region shrank, the thicknesses of oxide scales and the size of oxide particles increased. Meanwhile, the double-layer characteristics of oxide scales became more obvious, but the compactness and stability of oxide scales degraded dramatically, resulting in the deterioration of corrosion resistance and the increase of corrosion rate of Alloy 690.

Key words:  Alloy 690      PWR      high-temperature electrochemical corrosion      secondary circuit water     

Cite this article: 

Jiamei WANG,Hui LU,Zhengang DUAN,Lefu ZHANG,Fanjiang MENG,Xuelian XU. Effect of Temperature on Electrochemical Behavior of Alloy 690 in Simulated PWR Secondary Circuit Water. Journal of Chinese Society for Corrosion and protection, 2016, 36(2): 113-120.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2015.032     OR     https://www.jcscp.org/EN/Y2016/V36/I2/113

Fig.1  Schematic diagram of the Alloy 690 tube specimen
Fig.2  Schematic diagram of high temperature high pressure water loop system
Fig.3  EIS results of Alloy 690 in the simulated secondary circuit water (100 μg/L DO+100 μg/L Cl-+ETA) of PWR at different temperatures
Fig.4  Equivalent circuit used for fitting EIS data of Alloy 690
Fig.5  Polarization (a) and solution resistances (b) of Alloy 690 at different temperatures
Fig.6  Potentiodynamic curves for Alloy 690 in the simulated secondary circuit water (100 μg/L DO+100 μg/L Cl-+ETA) of PWR at different temperatures
Fig.7  Electrochemical parameters of alloy 690 as a function of temperature: (a) Etp and Ip, (b) Ecorr and Etp
Fig.8  Arrhenius plot of the passive current density and temperature
Fig.9  Surface morphologies of the oxide films formed on Alloy 690 exposed to simulated PWR secondary circuit water (100 μg/L DO+100 μg/L Cl-+ETA) for 30 h at 150 ℃ (a), 200 ℃ (b), 250 ℃ (c) and 285 ℃ (d)
Temperature / ℃ Position O K Fe K Cr K Ni K
150 1 6.40 9.52 26.32 49.70
2 --- 9.29 29.13 54.86
200 1 10.59 9.87 25.76 46.24
2 27.50 15.14 18.63 30.97
250 1 9.61 9.56 25.30 47.46
2 6.39 8.52 25.27 48.77
285 1 20.28 4.57 20.32 36.65
2 19.58 12.15 21.79 41.84
Table 1  EDS elemental analysis of Alloy 690 exposed to simulated PWR secondary circuit water (100 μg/L DO+100 μg/L Cl-+ETA) at different temperatures (atomic fraction / %)
Fig.10  Depth profiles of the main elements on the oxide film of Alloy 690
Fig.11  XPS spectra of Cr2p3/2 (a), Fe3p (b), Ni2p3/2 (c) and O1s (d) on oxide film of Alloy 690
Fig.12  Schematic diagram of double layered oxide film formed on Alloy 690
[1] Dutta R S.Corrosion aspects of Ni-Cr-Fe based and Ni-Cu based steam generator tube materials[J]. J. Nucl. Mater., 2009, 393(2): 343
[2] Staehle R W, Gorman J A.Quantitative assessment of submodes of stress corrosion cracking on the secondary side of steam generator tubing in pressurized water reactors: Part 3[J]. Corrosion, 2004, 60(2): 115
[3] Huang J, Wu X, Han E-H.Electrochemical properties and growth mechanism of passive films on Alloy 690 in high-temperature alkaline environments[J]. Corros. Sci., 2010, 52(10): 3444
[4] Abraham G J, Bhambroo R, Kain V, et al.Electrochemical characterization of oxide film formed at high temperature on Alloy 690[J]. Nucl. Eng. Des., 2012, 243: 69
[5] Shih C H, Yoshitsugu M.Nuclear Reactor Material Handbook [M]. Beijing: Atomic Energy Press, 1983
[5] (长谷川正义, 三岛良绩. 核反应堆材料手册 [M]. 北京: 原子能出版社, 1983)
[6] Greeley R S, Smith W T, Stoughton R W, et al.Electromotive force studies in aqueous solutions at elevated temperatures. 1. The standard potential of the silver-silver chloride electrode1[J]. J. Phys.Chem., 1960, 64(12): 1861
[7] Bosch R W, Wéber M, Vankeerberghen M.In-pile electrochemical measurements on AISI 304 and AISI 306 in PWR conditions-Experimental results[J]. J. Nucl. Mater., 2007, 360(3): 304
[8] Li X H, Wang J Q, Han E-H, et al.Corrosion behavior of nuclear grade alloys 690 and 800 in simulated high temperature and high pressure primary water of pressurized water reactor[J]. Acta Metall. Sin., 2012, 48(8): 941
[8] (郦晓慧, 王俭秋, 韩恩厚等. 核级商用690合金和800合金在模拟压水堆核电站一回路高温高压水中的腐蚀行为研究[J]. 金属学报, 2012, 48(8): 941)
[9] Sun H, Wu X, Han E-H, et al.Effects of pH and dissolved oxygen on electrochemical behavior and oxide films of 304SS in borated and lithiated high temperature water[J]. Corros. Sci., 2012, 59: 334
[10] Huang J, Wu X, Han E-H.Influence of pH on electrochemical properties of passive films formed on Alloy 690 in high temperature aqueous environments[J]. Corros. Sci., 2009, 51(12): 2976
[11] Huang J, Wu X, Han E-H.Electrochemical properties and growth mechanism of passive films on Alloy 690 in high-temperature alkaline environments[J]. Corros. Sci., 2010, 52(10): 3444
[12] Lemire R J, McRae G A. The corrosion of Alloy 690 in high-temperature aqueous media-thermodynamic considerations[J]. J. Nucl. Mater., 2001, 294(1): 141
[13] Douglas L, Zyzes F C.The corrosion of iron in high-temperature water (Part 1-corrosion rate measurements)[J]. Corrosion, 1957, 13(6): 19
[14] Ziemniak S E, Hanson M.Corrosion behavior of NiCrFe Alloy 600 in high temperature, hydrogenated water[J]. Corros. Sci., 2006, 48(2): 498
[15] Hermas A A, Salam M A, Al-Juaid S S, et al. Electrosynthesis and protection role of polyaniline-polvinylalcohol composite on stainless steel[J]. Prog. Org. Coat., 2014, 77(2): 403
[16] Liu X, Wu X, Han E-H.Effect of Zn injection on established surface oxide films on 316L stainless steel in borated and lithiated high temperature water[J]. Corros. Sci., 2012, 65: 136
[17] McIntyre N S, Cook M G. X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper[J]. Anal. Chem., 1975, 47(13): 2208
[18] Machet A, Galtayries A, Marcus P, et al.XPS study of oxides formed on nickel-base alloys in high-temperature and high-pressure water[J]. Surf. Interface Anal., 2002, 34(1): 197
[19] Pourbaix M.Atlas of Electrochemical Equilibria in Aqueous Solutions[M]. 2nd. Ed. Houston: NACE International, 1974
[20] Lister D H, Davidson R D, McAlpine E. The mechanism and kinetics of corrosion product release from stainless steel in lithiated high temperature water[J]. Corros. Sci., 1987, 27(2): 113
[21] Bazan J C, Arvia A J.The diffusion of ferro-and ferricyanide ions in aqueous solutions of sodium hydroxide[J]. Electrochim. Acta, 1965, 10(10): 1025
[22] Ziemniak S E, Hanson M.Corrosion behavior of NiCrFe Alloy 600 in high temperature, hydrogenated water[J]. Corros. Sci., 2006, 48(2): 498
[23] Ziemniak S E, Hanson M.Corrosion behavior of NiCrMo Alloy 625 in high temperature, hydrogenated water[J]. Corros. Sci., 2003, 45(7): 1595
[24] Ziemniak S E, Hanson M, Sander P C.Electropolishing effects on corrosion behavior of 304 stainless steel in high temperature, hydrogenated water[J]. Corros. Sci., 2008, 50(9): 2465
[25] Was G S, Ampornrat P, Gupta G, et al.Corrosion and stress corrosion cracking in supercritical water[J]. J. Nucl. Mater., 2007, 371(1): 176
[26] Robertson J.The mechanism of high temperature aqueous corrosion of steel[J]. Corros. Sci., 1989, 29(11/12): 1275
[1] Xiaoqiang LIU,Xuelian XU,Jibo TAN,Yuan WANG,Xinqiang WU,Yuli ZHENG,Fanjiang MENG,En-Hou HAN. Effect of Reactor Coolant Environment on Fatigue Performance of Alloy 690 Steam Generator Tubes[J]. 中国腐蚀与防护学报, 2015, 35(3): 213-219.
[2] HAI Zhengyin, WANG Hui, XIN Changsheng, CAI Min, QIN Bo, CHEN Tong. Influence of Zn Addition on Oxide Films Formed on Alloy 690 in High Temperature Water[J]. 中国腐蚀与防护学报, 2014, 34(6): 532-536.
[3] DUAN Zhengang, ZHANG Lefu, WANG Li, XU Xuelian, SHI Xiuqiang. Effect of Zn Addition on Composition of Oxide Scales Formed on 316L Stainless Steel in High-temperatureand High-pressured Water[J]. 中国腐蚀与防护学报, 2014, 34(3): 249-252.
[4] HAI Zhengyin, WANG Hui, CAO Linyuan, HU Yong. Effect of Pt Deposit on Corrosion Behavior of 316LN in Simulated Primary Loop Water Environment of Pressurized Water Reactor[J]. 中国腐蚀与防护学报, 2014, 34(3): 253-256.
[5] DUAN Zhengang, ZHANG Lefu, JIANG Suqing, SHI Xiuqiang, XU Xuelian. Effect of Zn Addition on Behavior of Deposited Co in Oxide Scales of Alloys in PWR Primary Water[J]. 中国腐蚀与防护学报, 2014, 34(2): 192-194.
[6] MENG Fanjiang,WANG Jianqiu,HAN En-Hou,KE Wei. Stress Corrosion Crack Initiation for Scratched Alloy 690TT in Oxygenated High Temperature Water[J]. 中国腐蚀与防护学报, 2013, 33(5): 413-418.
[7] SUN Rongpeng,WANG Jianqiu,Han En-Hou. Effects of ETA Concentration on Corrosion of Carbon Steel and Nickel Based Alloy 690 in Nuclear Power Plant on Secondary Side[J]. 中国腐蚀与防护学报, 2013, 33(2): 97-103.
[8] FENG Wanli, ZHANG Lefu, MA Mingjuan. EFFECTS OF ROLLING ON THE SPECIAL GRAIN BOUNDARIES AND INTERGRANULAR CORROSION OF ALLOY 690[J]. 中国腐蚀与防护学报, 2012, 32(4): 296-299.
[9] QIAO Yanxin, REN Ai, LIU Feihua. ELECTROCHEMICAL BEHAVIOR OF ALLOY 690 IN NaCl SOLUTION[J]. 中国腐蚀与防护学报, 2012, 32(2): 146-150.
[10] LI Xiaohui, WANG Jianqiu, HAN EnHou, KE Wei. STRESS CORROSION CRACKING BEHAVIORS FOR DIFFERENT NI-BASED WELDING MATERIALS IN HIGH TEMPERATURE AND HIGH PRESSURE WATER[J]. 中国腐蚀与防护学报, 2011, 31(6): 436-440.
[11] ZHANG Zhiming, WANG Jianqiu,HAN En-Hou, KE Wei. EFFECTS OF SURFACE CONDITION ON CORROSION AND STRESS CORROSION CRACKING OF ALLOY 690TT[J]. 中国腐蚀与防护学报, 2011, 31(6): 441-445.
[12] HU Yisong, WANG Jianqiu, KE Wei, HAN En-hou. CORROSION BEHAVIOR OF ALLOY 690TT IN HIGH TEMPERATURE LEAD-CONTAINING CAUSTIC SOLUTION[J]. 中国腐蚀与防护学报, 2010, 30(6): 427-432.
[13] YU Yuanfang, WANG Hui, HU Shilin. SOME CORROSION PROBLEMS OF ALLOY 690TT IN SPECIAL ENVIRONMENTS[J]. 中国腐蚀与防护学报, 2010, 30(3): 251-256.
No Suggested Reading articles found!