Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (3): 254-260    DOI: 10.11902/1005.4537.2016.019
Orginal Article Current Issue | Archive | Adv Search |
Effect of Carbon Nanotube on Properties of Epoxy Coating
Juan ZHANG(),Ziqiang LIU,Tao FENG,Shifeng WEN,Ruiqing CHEN
Advanced Material Test Center, School of Mechanics, Civil & Architecture, Northwestern Polytechnical University, Xi'an 710129, China
Download:  HTML  PDF(3069KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Epoxy coatings with different mass fraction of carbon nanotube (CNT) is prepared with epoxy as matrix, amine silane as curing agent, fumed silica as disperse dispersant, and carbodiimide as modifying agent. The effect of CNT amount on properties of epoxy coating is overall evaluated by means of pull-off adhesion test, ball-on-disk ear test, electrochemical impedance spectroscopy (EIS) and filiform corrosion test. The results show that, the adhesion strength, abrasion resistance and corrosion resistance are improved remarkable for the epoxy coating with 2% (mass fraction) of CNT in comparison to that without CNT addition. All the above mentioned properties are further improved for the epoxy coating with 5% and 7% of CNT. Furthermore, when the epoxy coating with the addition of CNT is up to 10%, of which the adhesion strength and abrasion resistance decreased, while the corrosion resistance and conductivity reach the optimum.

Key words:  carbon nanotube      epoxy coating      adhesion      friction      corrosion      EIS     
Received:  30 January 2016     
Fund: Supported by National Natural Science Foundation of China (51405391 and 51402238), Fundamental Research Funds for the Central Universities (3102015ZY034, 3102015ZY033 and 3102015ZY032) and Natural Science Basic Research Plan in Shaanxi Province of China (2014JQ1005)

Cite this article: 

Juan ZHANG,Ziqiang LIU,Tao FENG,Shifeng WEN,Ruiqing CHEN. Effect of Carbon Nanotube on Properties of Epoxy Coating. Journal of Chinese Society for Corrosion and protection, 2017, 37(3): 254-260.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.019     OR     https://www.jcscp.org/EN/Y2017/V37/I3/254

Fig.1  Effect of CNT content on adhesion of the epoxy coating
Specimen CNT contentmass fraction / % Epoxyg Amine silaneg
A 0 80.0 20.0
B 2 78.4 19.6
C 5 75.9 19.1
D 7 74.3 18.7
E 10 71.8 18.2
Table 1  Constitutes of the coatings with different contents of CNT
Fig.2  Effects of CNT content on wear resistance of the epoxy coating
Fig.3  Impendence modules of the epoxy coatings with different CNT contents
Fig.4  Fitting results of Bode plots of epoxy coating with 0% (a, b), 2% (c, d), 5% (e, f), 7% (g, h) and 10% (i, j) CNT after immersed in 3.5%NaCl solution for 1 h (a, c, e, g, i) and 120 d (b, d, f, h, j)
Fig.5  Surface morphologies of the epoxy coatings with 0% (a1, a2), 2% (b1, b2), 5% (c1, c2), 7% (d1, d2) and 10% (e1, e2) CNT after filiform corrosion for 60 d (a1~e1) and 90 d (a2~e2)
Fig.6  Exfoliated morphologies of the epoxy coatings with 0% (a), 2% (b), 5% (c), 7% (d) and 10% (e) CNT after filiform corrosion for 90 d
[1] Jurn Y N, Malek M F, Liu W W, et al.Review-coating methods of carbon nanotubes and their potential applications [A]. 2014 IEEE International Conference on Control System, Computing and Engineering (ICCSCE)[C]. Batu Ferringhi: IEEE, 2015: 118
[2] Alishahi M, Monirvaghefi S M, Saatchi A.The effect of the carbon nanotube content on the corrosion behaviour of Ni-P-CNT composite coating[J]. Int. J. ISSI, 2012, 9: 1
[3] Montazeri A, Montazeri N.Viscoelastic and mechanical properties of multi walled carbon nanotube/epoxy composites with different nanotube content[J]. Mater. Des., 2011, 32: 2301
[4] Ma P, Siddiqui N A, Marom G, et al.Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review[J]. Compos. Pt. A: Appl. Sci. Manuf., 2010, 41: 1345
[5] Moisala A, Li Q, Kinloch I A, Windle A H.Thermal and electrical conductivity of single-and multi-walled carbon nanotube-epoxy composites[J]. Compos. Sci. Technol., 2006, 66: 1285
[6] Martin C A, Sandler J K W, Windle A H, et al. Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites[J]. Polymer, 2005, 46: 877
[7] Li J, Ma P C, Chow W S, et al.Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes[J]. Adv. Funct. Mater., 2007, 17(16): 3207
[8] Sandler J K W, Kirk J E, Kinloch I A, et al. Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites[J]. Polymer, 2003, 44: 5893
[9] Husain A, Al-Bahar S, Chakkamalayath J, et al.Differential scanning calorimetry and optical photo microscopy examination for the analysis of failure of fusion bonded powder epoxy internal coating[J]. Eng. Fail. Analy., 2015, 56: 375
[10] Khun N W, Troconis B C, Frankel G S.Effects of carbon nanotube content on adhesion strength and wear and corrosion resistance of epoxy composite coatings on AA2024-T3[J]. Prog. Org. Coat., 2014, 77: 72
[11] Deyab M A.Corrosion protection of aluminum bipolar plates with polyaniline coating containing carbon nanotubes in acidic medium inside the polymer electrolyte membrane fuel cell[J]. J. Power Sour., 2014, 268: 50
[12] Yang K, Gu M Y, Jin Y P.Cure behavior and thermal stability analysis of multiwalled carbon nanotube/epoxy resin nanocomposites[J]. J. Appl. Polym. Sci., 2008, 110: 2980
[13] Gong J, Niu R, Wen X, et al.Synergistic effect of carbon fibers and carbon nanotubes on improving thermal stability and flame retardancy of polypropylene: A combination of a physical network and chemical crosslinking[J]. RSC Adv., 2015, 5: 5484
[14] Peng C Z.The effect of surface coating of CNTs on the mechanical properties of CF-filled HDPE composites[J]. Surf. Interface Anal., 2015, 47: 357
[15] Cheng K, Yang E, Chi Y L, et al.Fine-tuned polymer Nano-composite coatings for use in geothermal plants [A]. ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems[C]. Scottsdale: ASME, 2011: 713
[1] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[3] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[4] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[5] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[6] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[7] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[8] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[9] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[10] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[11] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[12] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[13] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[14] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!