Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (3): 261-266    DOI: 10.11902/1005.4537.2016.038
Orginal Article Current Issue | Archive | Adv Search |
Mechanism of Galvanic Corrosion of Coupled 2024 Al-alloy and 316L Stainless Steel Beneath a Thin Electrolyte Film Studied by Real-time Monitoring Technologies
Yanjie LIU1,Zhenyao WANG1(),Binbin WANG1,Yan CAO2,Yang HUO2,Wei KE1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 Liaoning Hongyanhe Nuclear Power Co., Ltd, Dalian 116319, China
Download:  HTML  PDF(1358KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Atmospheric corrosion monitor (ACM), zero resistance amperemeter (ZRA) and electrochemical impedance spectroscopy (EIS) were applied to detect deeply the real-time galvanic corrosion of the couple of 2024 Al-alloy and 316L stainless steel beneath a thin electrolyte film. The galvanic corrosion process could be divided into three phases: initial phase, acceleration phase and deceleration phase. The smaller the insulative space between the two different materials is, the shorter the initial and acceleration phases are.

Key words:  real-time monitoring      Al-alloy      stainless steel      galvanic corrosion     
Received:  23 March 2016     
Fund: Supported by National Natural Science Foundation of China (51671197)

Cite this article: 

Yanjie LIU,Zhenyao WANG,Binbin WANG,Yan CAO,Yang HUO,Wei KE. Mechanism of Galvanic Corrosion of Coupled 2024 Al-alloy and 316L Stainless Steel Beneath a Thin Electrolyte Film Studied by Real-time Monitoring Technologies. Journal of Chinese Society for Corrosion and protection, 2017, 37(3): 261-266.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.038     OR     https://www.jcscp.org/EN/Y2017/V37/I3/261

Material Si Cu Mn Zn Mg Al C P S Ni Cr Mo Fe
2024 alloy 0.50 4.18 0.30 0.30 1.30~1.80 Bal. --- --- --- --- --- --- 0.50
316L SS ≤1.00 --- ≤2.00 --- --- --- ≤0.03 ≤0.035 ≤0.03 10.0~14.0 16.0~18.0 2.0~3.0 Bal.
Table 1  Chemical compositions of AA2024 alloy and 316L SS(mass fraction / %)
Fig.1  Galvanic couple for galvanic corrosion test
Test process Timemin Temperature℃
Step 1 Fog 30 35
Step 2 Dry 90 35
Step 3 Subcycle Step 4~5 Repeat 11 X
Step 4 Humidity (RH≥95%) 40 35
Step 5 Dry 80 35
Table 2  Parameters of one cycle process in galvanic corrosion test
Fig.2  Galvanic current vs time curves for the galvanic sample with the gap of 0.3 mm in the first cycle (a), thirteenth (b), twentieth (c) and twenty-seventh (d) cycles of galvanic corrosion test
Fig.3  Galvanic current vs corrosion time curves for the galvanic sample with different galvanic spacings
Fig.4  Bode plots (phase vs frequency) of the galvanic sample with 0.3 mm gap after corrosion for different time
Fig.5  Bode plots (|Z | vs frequency) of the galvanic sample with 0.3 mm gap after corrosion for different time
Fig.6  Bode plots (phase vs frequency) of the galvanic sample with the gap of 1 mm after corrosion for different time
Fig.7  Bode plots (|Z | vs frequency) of the galvanic sample with the gap of 1 mm after corrosion for different time
Fig.8  Bode plots (phase vs frequency) of the galvanic sample with the gap of 3 mm after corrosion for different time
[1] Bellucci F.Galvanic corrosion between nonmetallic composites and metals: I effect of metal and of temperature[J]. Corrosion, 1991, 47: 808
[2] Moshrefi R, Ghassem Mahjani M, Ehsani A, et al.A study of the galvanic corrosion of titanium/L 316 stainless steel in artificial seawater using electrochemical noise (EN) measurements and electrochemical impedance spectroscopy (EIS)[J]. Anti-Corros. Methods Mater., 2011, 58: 250
[3] Mansfeld F.Area relationships in galvanic corrosion[J]. Corrosion, 1971, 27: 436
[4] Palani S, Hack T, Deconinck J, et al.Validation of predictive model for galvanic corrosion under thin electrolyte layers: An application to aluminium 2024-CFRP material combination[J]. Corros. Sci., 2014, 78: 89
[5] Lee J M.Numerical analysis of galvanic corrosion of Zn/Fe interface beneath a thin electrolyte[J]. Electrochim. Acta, 2006, 51: 3256
[6] Bellucci F.Galvanic corrosion between nonmetallic composites and metals II. Effect of area ratio and environmental degradation[J]. Corrosion, 1992, 48: 281
[7] Pryor M J, Keir D S.Galvanic corrosion II. Effect of pH and dissolved oxygen concentration on the aluminum-steel couple[J]. J. Electrochem. Soc., 1958, 105: 629
[8] Song G L, Johannesson B, Hapugoda S, et al.Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminium alloy, steel and zinc[J]. Corros. Sci., 2004, 46: 955
[9] Mouanga M, Puiggali M, Tribollet B, et al.Galvanic corrosion between zinc and carbon steel investigated by local electrochemical impedance spectroscopy[J]. Electrochim. Acta, 2013, 88: 6
[10] Krüger L, Mandel M.Electrochemical behaviour of aluminium/steel rivet joints[J]. Corros. Sci., 2011, 53: 624
[11] Feng Z C, Frankel G S.Galvanic test panels for accelerated corrosion testing of coated al alloys: part 2-measurement of galvanic interaction[J]. Corrosion, 2014, 70: 95
[12] Yamashita M, Nagano H, Oriani R.Dependence of corrosion potential and corrosion rate of a low-alloy steel upon depth of aqueous solution[J]. Corros. Sci., 1998, 40: 1447
[13] Schneider M, Kremmer K, L?mmel C, et al.Galvanic corrosion of metal/ceramic coupling[J]. Corros. Sci., 2014, 80: 191
[14] Thébault F, Vuillemin B, Oltra R, et al.Modeling bimetallic corrosion under thin electrolyte films[J]. Corros. Sci., 2011, 53: 201
[15] Wang L, Xuan W F, Mu X L.Corrosion performance of 2A11 aluminium alloy coupled with carbon steel in accelerated natural environmental condition[J]. Surf. Technol., 2011, 40(5): 1
[15] (王玲, 宣卫芳, 牟献良. 2A11铝合金/碳钢偶接件在强化自然环境条件下的腐蚀特性[J]. 表面技术, 2011, 40(5): 1)
[16] Zhou H R, Li X G, Ma J, et al.Dependence of the corrosion behavior of aluminum alloy 7075 on the thin electrolyte layers[J]. Mater. Sci. Eng., 2009, B162: 1
[1] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[2] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[3] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[4] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[5] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[6] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[7] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[8] DING Qingmiao, QIN Yongxiang, CUI Yanyu. Galvanic Corrosion of Aircraft Components in Atmospheric Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[9] ZHAO Baijie, FAN Yi, LI Zhenzhen, ZHANG Bowei, CHENG Xuequn. Crevice Corrosion Behavior of 316L Stainless Steel Paired with Four Different Materials[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[10] YI Hongwei, HU Huihui, CHEN Changfeng, JIA Xiaolan, HU Lihua. Corrosion Behavior and Corrosion Inhibition of Dissimilar Metal Welds for X65 Steel in CO2-containing Environment[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[11] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[12] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[13] BAI Miaomiao, BAI Ziheng, JIANG Li, ZHANG Dongjiu, YAO Qiong, WEI Dan, DONG Chaofang, XIAO Kui. Corrosion Behavior of H62 Brass Alloy/TC4 Titanium Alloy Welded Specimens[J]. 中国腐蚀与防护学报, 2020, 40(2): 159-166.
[14] HE Zhuang,WANG Xingping,LIU Zihan,SHENG Yaoquan,MI Mengxin,CHEN Lin,ZHANG Yan,LI Yuchun. Passivation and Pitting of 316L and HR-2 Stainless Steel in Hydrochloric Acid Liquid Membrane Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[15] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
No Suggested Reading articles found!