Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (4): 301-306    DOI: 10.11902/1005.4537.2013.123
Current Issue | Archive | Adv Search |
Corrosion Behavior of Candidate SCWR Fuel Cladding Materials
SHEN Zhao, ZHANG Lefu, ZHU Fawen, BAO Yichen
School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Download:  HTML  PDF(1400KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Corrosion performance of candidate clad materials for fuel of supercritical water-cooled reactor (SCWR) is reviewed with emphasis on that of four typical candidate alloys. According to the results presented in this paper, it is noted that the austenitic stainless steels with high Cr content show excellent corrosion resistance. Therefore, this kind of steels should be good candidate clad material for the fuel of SCWR.
Key words:  supercritical water-cooled reactor      fuel cladding      corrosion      oxide film     
Received:  21 June 2013     
ZTFLH:  TG172  

Cite this article: 

SHEN Zhao, ZHANG Lefu, ZHU Fawen, BAO Yichen. Corrosion Behavior of Candidate SCWR Fuel Cladding Materials. Journal of Chinese Society for Corrosion and protection, 2014, 34(4): 301-306.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.123     OR     https://www.jcscp.org/EN/Y2014/V34/I4/301

[1] Hofmeister J, Waata C, Starflinger J, et al. Fuel assembly design study for a reactor with supercritical water [J]. Nucl. Eng. Des., 2007, 237: 1513-1521
[2] Duffey R, Kuran S, Pioro I. Designing high efficiency reactors using existing ultrasupercritical technology [J]. J. Nucl. Mater., 2007, 49: 226-231
[3] Liu X J, Chen X. Thermal-hydraulic and neutron-physical characteristics of a new SCWR fuel assembly [J]. Ann. Nucl. Energ., 2009, 36: 28-36
[4] Liu X J, Yang T, Chen X. Core and sub-channel analysis of SCWR with mixed spectrum core [J]. Ann. Nucl. Energ., 2010, 37: 1674-1682
[5] Fischer K, Schulenberg T, Laurien E. Design of a supercritical water-cooled reactor with a three-pass core arrangement [J]. Nucl. Eng.Des., 2009, 239: 800-812
[6] Arthur M, Aylin Y, Marcelo S, et al. Zirconium alloys for supercritical water reactor applications: Challenges and possibilities [J]. J. Nucl. Mater., 2007, 371: 61-75
[7] Garner F, Black C, Edwards D. Factors which control the swelling of Fe-Cr-Ni ternary austenitic alloys [J]. J. Nucl. Mater., 1997, 245: 124-130
[8] Garner F, Toloczko M, Sencer B. Comparison of swelling and irradiation creep behavior of fcc-austenitic and bcc-ferritic/martensitic alloys at high neutron exposure [J]. J. Nucl. Mater., 2000, 276: 123-142
[9] Garry W, Pantip A, Gupta G, et al. Corrosion and stress corrosion cracking in supercritical water [J]. J. Nucl. Mater., 2007, 371: 176-201
[10] Wright G, Dooley R. A review of the oxidation behaviour of structural alloys in steam [J]. Int. Mater. Rev., 2010, 55: 129-167
[11] Zhang L F, Zhu F W, Tang R. Corrosion mechanisms of candidate structural materials for supercritical water-cooled reactor [J]. Front. Ener. Pow. Eng. China, 2009, 3: 233-240
[12] Radak N, H?hner P, Siegl P, et al. Stress corrosion crackingsusceptibility of austenitic stainless steels in supercritical water conditions [J]. J. Nucl. Mater., 2011, 409: 117-123
[13] Nie S H, Chen Y, Ren X, et al. Corrosion of alumina-forming austenitic steel Fe-20Ni-14Cr-3Al-0.6Nb-0.1Ti in supercritical water [J]. J. Nucl. Mater., 2010, 399: 231-235
[14] Isselin J, Kasada R, Kimura A. Corrosion behaviour of 16%Cr-4%Al and 16%Cr ODS ferritic steels under different metallurgical conditions in a supercritical water environment [J]. Corros. Sci., 2010, 52: 3266-3270
[15] Zhang Q, Tang R, Yin K J, et al. Corrosion behavior of Hastelloy C-276 in supercritical water [J]. Corros. Sci., 2009, 51: 2092-2097
[16] Chen Y, Sridharan K, Allen T. Corrosion behavior of ferritic-martensitic steel T91 in supercritical water [J]. Corros. Sci., 2006, 48: 2843-2854
[17] Cho H S, Kimura A, Ukai S. Corrosion properties of oxide dispersion strengthened steels in super critical water environment [J]. J. Nucl. Mater., 2004, 329: 387-391
[18] Gupta G, Ampornrat P, Ren X, et al. Role of grain boundary engineering in the SCC behavior of ferritic-martensitic alloy HT-9 [J]. J. Nucl. Mater., 2007, 361: 160-173
[19] Yoon Y S, Ha H Y, Lee T H, et al. Effect of N and C on stress corrosion cracking susceptibility of austenitic Fe18Cr10Mn-based sta- inless steels [J]. Corros. Sci., 2014, 80: 28-36
[20] Sun M C, Wu X Q, Zhang Z E. Oxidation of 316 stainless steel in supercritical water [J]. Corros. Sci., 2009, 51: 1069-1072
[21] Briggs D, Seah M. Practical surface analysis auger and X-ray photoelectron spectroscopy [J]. J. Nucl. Mater., 1990, 52: 193-335
[22] Zhang L F, Bao Y C, Tang R. Selection and corrosion evaluation testsof candidate SCWR fuel cladding materials [J]. Nucl. Eng. Des., 2012, 249: 180-187
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[10] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[11] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[12] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[14] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!