|
|
Research Progress of Crevice Corrosion and Crevice Corrosion Issues of Nuclear-grade Materials |
CHEN Dongxu, WU Xinqiang, HAN En-Hou |
Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Material, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
|
Abstract The relevant simulation techniques, influencing factors and mechanisms of crevice corrosion were summarized. The crevice corrosion issues of the nuclear-grade materials during service were reviewed. The status and main problems on crevice corrosion in high-temperature and high-pressure water environments have been discussed. The coming possible research topics and directions are also proposed.
|
Received: 30 September 2013
|
|
[1] Liu D X. Corrosion and Protection of Material [M]. Xi'an: Northwestern Polytechnical University Press, 2006: 128-136 (刘道新. 材料的腐蚀与防护 [M]. 西安: 西北工业大学出版社, 2006: 128-136) [2] Cao C N. Theory of Corrosion Electrochemistry [M]. Beijing: Chemical Industry Press, 2004: 276-287 (曹楚南. 腐蚀电化学原理 [M]. 北京: 化学工业出版社, 2004: 276-287) [3] Xiao J M, Cao C N. Theory of Material Corrosion [M]. Beijing: Chemical Industry Press, 2002: 44-47 (肖纪美, 曹楚南. 材料腐蚀学原理 [M]. 北京: 化学工业出版社, 2002: 44-47) [4] Pickering H W. On the roles of corrosion products in local cell processes [J]. Corrosion, 1986, 42: 125-140 [5] Pickering H W, Frankenthal R P. Mechanism of localized corrosion of iron and stainless steel [J]. Electrochemical, 1972, 119: 1297-1310 [6] Pickering H W. The significance of the local electrode potential wit- hin pits, crevices and cracks [J]. Corros. Sci., 1989, 29: 325-341 [7] Shu H K, Faqeer F M, Pickering H W. Pitting on the crevice wall pr- ior to crevice corrosion [J]. Electrochim. Acta, 2011, 56: 1719-1728 [8] Kennell G F, Evitts R W, Heppner K L. A critical crevice solution and IR drop crevice corrosion model [J]. Corros. Sci., 2008, 50: 1716-1725 [9] Force B D, Pickering H W. A clearer view of how crevice corrosion occurs [J]. J. Miner. Met. Mater. Soc., 1995, 47: 22-27 [10] Suzuki T, Yamane M, Kitamura Y. Electrochemical testing method for stress corrosion cracking by separating crack anode from cathode [J]. Corrosion, 1973, 29: 70-74 [11] Lee Y H, Takehara Z, Yoshizawa S. The enrichment of hydrogen and chloride ions in the crevice corrosion of steels [J]. Corros. Sci., 1981, 21: 391-397 [12] Peterson M H, Lennox T J. Study of cathodic polarization and pH changes in metal crevices [J]. Corrosion, 1973, 29: 406-410 [13] Peterson M H, Lennox T J, Groover R E. A study of crevice corrosion in type-304 stainless steel [J]. Mater. Prot. Perform., 1970, 9: 23-26 [14] Brown B F, Fujii C T, Dahlberg E P. Methods for studying solution chemistry within stress corrosion cracks [J]. J. Electrochem., 1969, [15] Sharland S M. A mathematical of the initiation of crevice corrosion in metals [J]. Corros. Sci., 1992, 33: 183-201 [16] ASTM G48-03. Standard test methods for pitting and crevice corrosion resistance of stainless steels and related alloys by use of ferric chloride solution [S]. 2009 [17] GB/T 13671-92. Stainless steels-Method of electrochemical test for crevice corrosion [S]. 1992 [18] Zhong Q D. Study on crevice corrosion of copper using wire beam electrode [J]. J. Chin. Soc. Corros. Prot., 1999, 19: 189-192 (钟庆东. 采用丝束电极研究金属的缝隙腐蚀 [J]. 中国腐蚀与防护学报, 1999, 19: 189-192) [19] Klassen R D, Roberge P R, Hyatt C V. A novel approach to characterizing localized corrosion within a crevice [J]. Electrochim. Acta, 2001, 46: 3705-3713 [20] Na E Y. An electrochemical evaluation on the crevice corrosion of 430 stainless steel by micro capillary tubing method [J]. J. Mater. Sci., 2006, 41: 3465-3471 [21] Na E Y, Ko J Y, Baik S Y. Electrochemical evaluation of crevice corrosion of 430 ferritic stainless steel using the microcapillary tube technique [J]. Desalination, 2005, 186: 65-74 [22] Xu J, Wu X Q, Han E-H. Acoustic emission during the electrochemical corrosion of 304 stainless steel in H 2 SO 4 solution [J]. Corros. Sci., 2011, 53: 448-457 [23] Xu J, Wu X Q, Han E-H. Acoustic emission during pitting corrosion of 304 stainless steel [J]. Corros. Sci., 2011, 53: 1537-1546 [24] Fregonese M, Idrissi H, Mazille H, et al. Initiation and propagation steps in pitting corrosion of austenitic stainless steels: monitoring by acoustic emission [J]. Corros. Sci., 2001, 43: 627-641 [25] Jones R H, Friesel M A. Acoustic emission during pitting and transgranular crack initiation in type 304 stainless steel [J]. Corrosion, 1992, 48: 751-758 [26] Ungaro M L, Carranza R M, Rodriguez M A. Crevice corrosion study on alloy22 by electrochemical noise technique [J]. Procedia Mater. Sci., 2012, 1: 222-229 [27] Rauf A, Bogaerts W F. Monitoring of crevice corrosion with the electrochemical frequency modulation technique [J]. Electrochim.Acta, 2009, 54: 7357-7363 [28] Bosch R W, Hubrecht J, Bogaerts W F, et al. Electrochemical frequency modulation: A new electrochemical technique for online corrosion monitoring [J]. Corrosion, 2001, 57: 60-70 [29] Wang S. The crevice corrosion of stainless steel [D]. Edmonton: University of Alberta, 1994: 27-35 [30] Rosenfeld I L, Staehle K W. Localized corrosion [J]. Natl. Assoc. Corros. Eng., 1974, 3: 373 [31] Abdulsalam M I. Behaviour of crevice corrosion in iron [J]. Corros. Sci., 2005, 47: 1336-1351 [32] Chang H Y, Park Y S, Hwang W S. Initiation modeling of crevice corrosion in 316L stainless steels [J]. Mater. Proc. Technol., 2000, 103: 206-217 [33] Hu Q, Zhang G, Guo X P. The crevice corrosion behavior of stainless steel in sodium chloride solution [J]. Corros. Sci., 2011, 53: 4065-4072 [34] Brigham R J. The localized corrosion of stainless steel in high purity sulphate solutions [J]. Corrosion, 1987, 27: 545-549 [35] Yashiro H, Tanno K. The effect of electrolyte composition on the pitting and repassivation behavior of AISI 304 stainless steel at high temperature [J]. Corros. Sci., 1990, 31: 485-490 [36] Yashiro H, Tanno K, Hanayama H, et al. Effect of temperature on the crevice corrosion of type-304 stainless steel in chloride solution up to 250-degrees-C [J]. Corrosion, 1990, 46: 727-733 [37] Brigham R J, Tozer E W. Localized corrosion-resistance of Mn-substituted austenitic stainless steels effect of molybdenum and chromium [J]. Corrosion, 1976, 32: 274-276 [38] Vermilyea D A, Tedmon C S. A simple crevice corrosion theory [J]. J. Electrochem. Soc., 1970, 117: 437-440 [39] Lee Y H, Takehara Z, Yoshizawa S. The enrichment of hydrogen and chloride-ions in the crevice corrosion of steels [J]. Corros. Sci., 1981, 21: 391 [40] Kennell G F, Evitts R W. Crevice corrosion cathodic reactions and crevice scaling laws [J]. Electrochim. Acta, 2009, 54: 4696-4703 [41] Han D, Jiang Y M, Shi C, et al. Effect of temperature, chloride ion and pH on the crevice corrosion behavior of SAF 2205 duplex stainless steel in chloride solutions [J]. J. Mater. Sci., 2012, 47: 1018-1025 [42] Kwok C T, Man H C, Leung L K. Effect of temperature, pH and sulphide on the cavitation erosion behaviour of super duplex stainless steel [J]. Wear, 1997, 211: 84-93 [43] Pruitt N C, Sudarshan T S, Louthan M R. Influence of pH on the crevice corrosion and stress corrosion cracking behavior of 304 stainless steel [J]. J. Mater. Eng., 1988, 10: 99-108 [44] Lu B T, Luo J L, Lu Y C. Effects of pH on lead-induced passivity degradation of nuclear steam generator tubing alloy in high temperature crevice chemistries [J]. Electrochim. Acta, 2013, 87: 824-838 [45] Kain R M, Lee T S. Crevice corrosion behavior of stainless steel in seawater and related [J]. Corrosion, 1984, 40: 313-321 [46] Wang F P, Kang W L, Jing H M. The Theory, Method and Application of Corrosion Electrochemistry [M]. Beijing: Chemical Industry Press, 2008: 114-118 (王凤平, 康万利, 敬和民. 腐蚀电化学原理方法及应用 [M]. 化学工业出版社, 2008: 114-118) [47] Pessall N, Nurminen J I. Development of ferritic stainless steels for use in desalination plants [J]. Corrosion, 1974, 30: 381-392 [48] Bond A P, Dundas H J. Resistance of stainless steels to crevice corrosion in seawater [J]. Mater. Perform., 1984, 23: 39-43 [49] Lu Y C, Ives M B. The improvement of the localized corrosion resistance of stainless steel by cerium [J]. Corros. Sci., 1993, 34: 1773-1785 [50] Lu Y C, Ives M B. Chemical treatment with cerium to improve the crevice corrosion resistance of austenitic stainless steels [J]. Corros. Sci., 1995, 37: 145-155 [51] Engelhardt G R, Macdonald D, Millett P J. Transport processes in steam generator crevice 1:General corrosion model [J]. Corros. Sci., 1999, 41: 2165-2190 [52] Engelhardt G R, Macdonald D, Millett P J. Transport processes in steam generator crevice 2: A simplified method for estimating impurity accumulation rates [J]. Corros. Sci., 1999, 41: 2191-2211 [53] Abella J, Balachov I, Macdonald D D, et al. Transport processes in steam generator crevice 3:Experimental results [J]. Corros. Sci., 2002, 44: 191-205 [54] Tan J, Lu Y C, Xu J H, et al. Mass transfer characteristic in the formation stage of gas-liquid segmented flow in microchannel [J]. Chem. Eng. J., 2012, 185/186: 314-320 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|