Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (4): 295-300    DOI: 10.11902/1005.4537.2013.180
Current Issue | Archive | Adv Search |
Research Progress of Crevice Corrosion and Crevice Corrosion Issues of Nuclear-grade Materials
CHEN Dongxu, WU Xinqiang, HAN En-Hou
Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Material, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(459KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The relevant simulation techniques, influencing factors and mechanisms of crevice corrosion were summarized. The crevice corrosion issues of the nuclear-grade materials during service were reviewed. The status and main problems on crevice corrosion in high-temperature and high-pressure water environments have been discussed. The coming possible research topics and directions are also proposed.
Key words:  crevice corrosion      nuclear-grade material      high temperature and high pressure water     
Received:  30 September 2013     
ZTFLH:  TG172.82  

Cite this article: 

CHEN Dongxu, WU Xinqiang, HAN En-Hou. Research Progress of Crevice Corrosion and Crevice Corrosion Issues of Nuclear-grade Materials. Journal of Chinese Society for Corrosion and protection, 2014, 34(4): 295-300.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.180     OR     https://www.jcscp.org/EN/Y2014/V34/I4/295

[1] Liu D X. Corrosion and Protection of Material [M]. Xi'an: Northwestern Polytechnical University Press, 2006: 128-136 (刘道新. 材料的腐蚀与防护 [M]. 西安: 西北工业大学出版社, 2006: 128-136)
[2] Cao C N. Theory of Corrosion Electrochemistry [M]. Beijing: Chemical Industry Press, 2004: 276-287 (曹楚南. 腐蚀电化学原理 [M]. 北京: 化学工业出版社, 2004: 276-287)
[3] Xiao J M, Cao C N. Theory of Material Corrosion [M]. Beijing: Chemical Industry Press, 2002: 44-47 (肖纪美, 曹楚南. 材料腐蚀学原理 [M]. 北京: 化学工业出版社, 2002: 44-47)
[4] Pickering H W. On the roles of corrosion products in local cell processes [J]. Corrosion, 1986, 42: 125-140
[5] Pickering H W, Frankenthal R P. Mechanism of localized corrosion of iron and stainless steel [J]. Electrochemical, 1972, 119: 1297-1310
[6] Pickering H W. The significance of the local electrode potential wit- hin pits, crevices and cracks [J]. Corros. Sci., 1989, 29: 325-341
[7] Shu H K, Faqeer F M, Pickering H W. Pitting on the crevice wall pr- ior to crevice corrosion [J]. Electrochim. Acta, 2011, 56: 1719-1728
[8] Kennell G F, Evitts R W, Heppner K L. A critical crevice solution and IR drop crevice corrosion model [J]. Corros. Sci., 2008, 50: 1716-1725
[9] Force B D, Pickering H W. A clearer view of how crevice corrosion occurs [J]. J. Miner. Met. Mater. Soc., 1995, 47: 22-27
[10] Suzuki T, Yamane M, Kitamura Y. Electrochemical testing method for stress corrosion cracking by separating crack anode from cathode [J]. Corrosion, 1973, 29: 70-74
[11] Lee Y H, Takehara Z, Yoshizawa S. The enrichment of hydrogen and chloride ions in the crevice corrosion of steels [J]. Corros. Sci., 1981, 21: 391-397
[12] Peterson M H, Lennox T J. Study of cathodic polarization and pH changes in metal crevices [J]. Corrosion, 1973, 29: 406-410
[13] Peterson M H, Lennox T J, Groover R E. A study of crevice corrosion in type-304 stainless steel [J]. Mater. Prot. Perform., 1970, 9: 23-26
[14] Brown B F, Fujii C T, Dahlberg E P. Methods for studying solution chemistry within stress corrosion cracks [J]. J. Electrochem., 1969,
[15] Sharland S M. A mathematical of the initiation of crevice corrosion in metals [J]. Corros. Sci., 1992, 33: 183-201
[16] ASTM G48-03. Standard test methods for pitting and crevice corrosion resistance of stainless steels and related alloys by use of ferric chloride solution [S]. 2009
[17] GB/T 13671-92. Stainless steels-Method of electrochemical test for crevice corrosion [S]. 1992
[18] Zhong Q D. Study on crevice corrosion of copper using wire beam electrode [J]. J. Chin. Soc. Corros. Prot., 1999, 19: 189-192 (钟庆东. 采用丝束电极研究金属的缝隙腐蚀 [J]. 中国腐蚀与防护学报, 1999, 19: 189-192)
[19] Klassen R D, Roberge P R, Hyatt C V. A novel approach to characterizing localized corrosion within a crevice [J]. Electrochim. Acta, 2001, 46: 3705-3713
[20] Na E Y. An electrochemical evaluation on the crevice corrosion of 430 stainless steel by micro capillary tubing method [J]. J. Mater. Sci., 2006, 41: 3465-3471
[21] Na E Y, Ko J Y, Baik S Y. Electrochemical evaluation of crevice corrosion of 430 ferritic stainless steel using the microcapillary tube technique [J]. Desalination, 2005, 186: 65-74
[22] Xu J, Wu X Q, Han E-H. Acoustic emission during the electrochemical corrosion of 304 stainless steel in H 2 SO 4 solution [J]. Corros. Sci., 2011, 53: 448-457
[23] Xu J, Wu X Q, Han E-H. Acoustic emission during pitting corrosion of 304 stainless steel [J]. Corros. Sci., 2011, 53: 1537-1546
[24] Fregonese M, Idrissi H, Mazille H, et al. Initiation and propagation steps in pitting corrosion of austenitic stainless steels: monitoring by acoustic emission [J]. Corros. Sci., 2001, 43: 627-641
[25] Jones R H, Friesel M A. Acoustic emission during pitting and transgranular crack initiation in type 304 stainless steel [J]. Corrosion, 1992, 48: 751-758
[26] Ungaro M L, Carranza R M, Rodriguez M A. Crevice corrosion study on alloy22 by electrochemical noise technique [J]. Procedia Mater. Sci., 2012, 1: 222-229
[27] Rauf A, Bogaerts W F. Monitoring of crevice corrosion with the electrochemical frequency modulation technique [J]. Electrochim.Acta, 2009, 54: 7357-7363
[28] Bosch R W, Hubrecht J, Bogaerts W F, et al. Electrochemical frequency modulation: A new electrochemical technique for online corrosion monitoring [J]. Corrosion, 2001, 57: 60-70
[29] Wang S. The crevice corrosion of stainless steel [D]. Edmonton: University of Alberta, 1994: 27-35
[30] Rosenfeld I L, Staehle K W. Localized corrosion [J]. Natl. Assoc. Corros. Eng., 1974, 3: 373
[31] Abdulsalam M I. Behaviour of crevice corrosion in iron [J]. Corros. Sci., 2005, 47: 1336-1351
[32] Chang H Y, Park Y S, Hwang W S. Initiation modeling of crevice corrosion in 316L stainless steels [J]. Mater. Proc. Technol., 2000, 103: 206-217
[33] Hu Q, Zhang G, Guo X P. The crevice corrosion behavior of stainless steel in sodium chloride solution [J]. Corros. Sci., 2011, 53: 4065-4072
[34] Brigham R J. The localized corrosion of stainless steel in high purity sulphate solutions [J]. Corrosion, 1987, 27: 545-549
[35] Yashiro H, Tanno K. The effect of electrolyte composition on the pitting and repassivation behavior of AISI 304 stainless steel at high temperature [J]. Corros. Sci., 1990, 31: 485-490
[36] Yashiro H, Tanno K, Hanayama H, et al. Effect of temperature on the crevice corrosion of type-304 stainless steel in chloride solution up to 250-degrees-C [J]. Corrosion, 1990, 46: 727-733
[37] Brigham R J, Tozer E W. Localized corrosion-resistance of Mn-substituted austenitic stainless steels effect of molybdenum and chromium [J]. Corrosion, 1976, 32: 274-276
[38] Vermilyea D A, Tedmon C S. A simple crevice corrosion theory [J]. J. Electrochem. Soc., 1970, 117: 437-440
[39] Lee Y H, Takehara Z, Yoshizawa S. The enrichment of hydrogen and chloride-ions in the crevice corrosion of steels [J]. Corros. Sci., 1981, 21: 391
[40] Kennell G F, Evitts R W. Crevice corrosion cathodic reactions and crevice scaling laws [J]. Electrochim. Acta, 2009, 54: 4696-4703
[41] Han D, Jiang Y M, Shi C, et al. Effect of temperature, chloride ion and pH on the crevice corrosion behavior of SAF 2205 duplex stainless steel in chloride solutions [J]. J. Mater. Sci., 2012, 47: 1018-1025
[42] Kwok C T, Man H C, Leung L K. Effect of temperature, pH and sulphide on the cavitation erosion behaviour of super duplex stainless steel [J]. Wear, 1997, 211: 84-93
[43] Pruitt N C, Sudarshan T S, Louthan M R. Influence of pH on the crevice corrosion and stress corrosion cracking behavior of 304 stainless steel [J]. J. Mater. Eng., 1988, 10: 99-108
[44] Lu B T, Luo J L, Lu Y C. Effects of pH on lead-induced passivity degradation of nuclear steam generator tubing alloy in high temperature crevice chemistries [J]. Electrochim. Acta, 2013, 87: 824-838
[45] Kain R M, Lee T S. Crevice corrosion behavior of stainless steel in seawater and related [J]. Corrosion, 1984, 40: 313-321
[46] Wang F P, Kang W L, Jing H M. The Theory, Method and Application of Corrosion Electrochemistry [M]. Beijing: Chemical Industry Press, 2008: 114-118 (王凤平, 康万利, 敬和民. 腐蚀电化学原理方法及应用 [M]. 化学工业出版社, 2008: 114-118)
[47] Pessall N, Nurminen J I. Development of ferritic stainless steels for use in desalination plants [J]. Corrosion, 1974, 30: 381-392
[48] Bond A P, Dundas H J. Resistance of stainless steels to crevice corrosion in seawater [J]. Mater. Perform., 1984, 23: 39-43
[49] Lu Y C, Ives M B. The improvement of the localized corrosion resistance of stainless steel by cerium [J]. Corros. Sci., 1993, 34: 1773-1785
[50] Lu Y C, Ives M B. Chemical treatment with cerium to improve the crevice corrosion resistance of austenitic stainless steels [J]. Corros. Sci., 1995, 37: 145-155
[51] Engelhardt G R, Macdonald D, Millett P J. Transport processes in steam generator crevice 1:General corrosion model [J]. Corros. Sci., 1999, 41: 2165-2190
[52] Engelhardt G R, Macdonald D, Millett P J. Transport processes in steam generator crevice 2: A simplified method for estimating impurity accumulation rates [J]. Corros. Sci., 1999, 41: 2191-2211
[53] Abella J, Balachov I, Macdonald D D, et al. Transport processes in steam generator crevice 3:Experimental results [J]. Corros. Sci., 2002, 44: 191-205
[54] Tan J, Lu Y C, Xu J H, et al. Mass transfer characteristic in the formation stage of gas-liquid segmented flow in microchannel [J]. Chem. Eng. J., 2012, 185/186: 314-320
[1] ZHAO Baijie, FAN Yi, LI Zhenzhen, ZHANG Bowei, CHENG Xuequn. Crevice Corrosion Behavior of 316L Stainless Steel Paired with Four Different Materials[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[2] Changgang WANG,Jie WEI,Xin WEI,Xin MU,Fang XUE,Junhua DONG,Wei KE,Guoping LI. Crevice Corrosion Behavior of Several Super Stainless Steels in a Simulated Corrosive Environment of Flue Gas Desulfurization Process[J]. 中国腐蚀与防护学报, 2019, 39(1): 43-50.
[3] Ruolin ZHU,Zhiming ZHANG,Jianqiu WANG,En-Hou HAN. Review on SCC Crack Growth Behavior of Dissimilar Metal Welds for Nuclear Power Reactors[J]. 中国腐蚀与防护学报, 2015, 35(3): 189-198.
[4] TAN Jibo, WU Xinqiang, HAN En-Hou. REVIEW ON RELATIONSHIP BETWEEN DYNAMIC STRAIN AGING AND ENVIRONMENTALLY ASSISTED CRACKING OF STRUCTURAL MATERIALS USED IN NUCLEAR POWER PLANTS[J]. 中国腐蚀与防护学报, 2012, 32(6): 437-442.
[5] WU Zhibin, WEI Yinghua, LI Jing, SUN Chao. EFFECT OF SOLUTION STATE ON CATHODIC POLARIZATION BEHAVIOR OF Q345 STEEL BENEATH SIMULATED DISBONDED COATING[J]. 中国腐蚀与防护学报, 2012, 32(5): 369-374.
[6] YANG Jiaxing, ZHAO Ping, SUN Cheng, XU Jin. INFLUENCE OF SULPHATE REDUCING BACTERIA ON CREVICE CORROSION BEHAVIOR OF Q235 STEEL[J]. 中国腐蚀与防护学报, 2012, 32(1): 54-58.
[7] CHEN Xu; LI Xiaogang; DU Cuiwei; LIANG Ping. EFFECTS OF SOLUTION ENVIRONMENTS ON CORROSION BEHAVIORS OF X70 STEELS UNDER SIMULATED DISBONDED COATING[J]. 中国腐蚀与防护学报, 2010, 30(1): 35-40.
[8] ;. Effectiveness of Cathodic Protection under Simulated Disbonded Coating on Pipelines[J]. 中国腐蚀与防护学报, 2007, 27(5): 257-262 .
[9] Yiquan Song; Cuiwei Du; Xiaogang Li; Junwei Wu; Yonggui Yan. THE INFLUENCE OF HUNK OF COATING DEFECT ON CORROSIVE CHARACTERISTIC OF CARBON STEELS AND EFFECTIVENESS OF CATHODIC PROTECTION[J]. 中国腐蚀与防护学报, 2005, 25(2): 74-78 .
[10] Jingmao Zhao; Yu Zuo; Jinping Xiong. CORROSION BEHAVIOR OF MILD STEEL IN SIMULATED SOLUTIONS WITHIN PITS AND CREVICES[J]. 中国腐蚀与防护学报, 2002, 22(4): 193-197 .
[11] Fengzheng Li. CURRENT DISTRIBUTION IN A CATHODICALLY PROTECTED CREVICE[J]. 中国腐蚀与防护学报, 2000, 20(6): 338-343 .
[12] Jianzhong Yan. THE EFFECT OF LOCALIZED CORROSION ON FRETTINGATTACK OF 316l STAINLESS STEEL IN 0.9%NaCl SOLUTION[J]. 中国腐蚀与防护学报, 2000, 20(4): 237-242 .
[13] Zhengfeng Li. Potential Distribution Inside a Cathodically Protected Crevice[J]. 中国腐蚀与防护学报, 2000, 20(3): 129-134 .
[14] Qingdong Zhong. STUDY ON CREVICE CORROSION OF COPPER USING WIRE BEAM ELECTRODE[J]. 中国腐蚀与防护学报, 1999, 19(3): 189-192 .
[15] Liang Chenghao;Jin Shouxun(Dalian University of Technology). INFLUENCE OF IRON AS ALLOYING ELEMENT ON CREVICE CORROSION BEHAVIOR OF TITANIUM[J]. 中国腐蚀与防护学报, 1995, 15(3): 210-216.
No Suggested Reading articles found!