Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (6): 1575-1588     CSTR: 32134.14.1005.4537.2025.037      DOI: 10.11902/1005.4537.2025.037
  研究报告 本期目录 | 过刊浏览 |
B30铜镍合金原始膜对其腐蚀的影响
王立芳, 商孟超, 高希钰, 刘贵昌(), 孙文
大连理工大学化工学院 大连 116024
Effect of Inherent Films Resulted from Manufacturing Process on Corrosion of B30 Cu-Ni Alloy
WANG Lifang, SHANG Mengchao, GAO Xiyu, LIU Guichang(), SUN Wen
School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
引用本文:

王立芳, 商孟超, 高希钰, 刘贵昌, 孙文. B30铜镍合金原始膜对其腐蚀的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1575-1588.
Lifang WANG, Mengchao SHANG, Xiyu GAO, Guichang LIU, Wen SUN. Effect of Inherent Films Resulted from Manufacturing Process on Corrosion of B30 Cu-Ni Alloy[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1575-1588.

全文: PDF(14121 KB)   HTML
摘要: 

研究了具有不同原始膜的B30铜镍合金初期腐蚀行为,结合原始膜与B30铜镍合金基体之间的组成和电化学差异,系统探讨了原始膜对B30铜镍合金腐蚀的影响。结果表明,原始膜中Ni的氧化物和单质碳膜的存在导致B30铜镍合金初始电位较基体更正、阻抗更高,不利于B30铜镍合金在海水中的快速形成腐蚀产物膜;尤其,当单质碳存在于原始膜中时,原始膜与基体之间的大电位差可维持较长时间,原始膜与基体间会形成“大阴极小阳极”,导致基体发生局部腐蚀,从而显著降低了B30铜镍合金的整体耐蚀性。当有原始膜试样的电位较负或可在1 h内降低并在腐蚀过程中维持在-0.1 V (相对于饱和甘汞电极电位)以下时,B30铜镍合金耐蚀性较好。当原始膜试样的电位正移并维持较长时间时,易发生点蚀,不利于B30铜镍合金的耐蚀性。开路电位及其演化特征可以作为评估原始膜对B30铜镍合金耐蚀性影响的指示参量。

关键词 B30铜镍合金原始膜电位耐蚀性局部腐蚀    
Abstract

The inherent surface film resulted from the manufacturing process on the as received B30 Cu-Ni alloy may affect its corrosion behavior, especially the initial stage of corrosion, but there is a lack of methods to quickly evaluate such influence. In this paper, the initial corrosion behavior in seawater of two B30 Cu-Ni alloys of more or less the same chemical composition but with different inherent films resulted by different manufacturing process were studied via immersion test with EIS and Mott-Schottky measurement, as well as SEM and XPS etc. The results show that the presence of Ni oxide and carbon film in the inherent film leads to a higher initial corrosion potential and higher impedance of B30 Cu-Ni alloy with the inherent film rather than that has the film removed, which is not conducive to the rapid formation of a corrosion products film on B30 Cu-Ni alloy in seawater. In particular, when elemental carbon exists in the inherent film, the potential difference between the surface film and the substrate can be maintained for a long time, thus a "large cathode and small anode" will be formed between the surface film and the substrate. This condition leads to localized corrosion of the substrate, significantly reducing the corrosion resistance of B30 Cu-Ni alloy. When the free corrosion potential of the B30 Cu-Ni alloy withinherent film is negative or can be reduced within 1 h and maintained below -0.1 V during corrosion process, a passive film with good corrosion resistance may form on the B30 Cu-Ni alloy surface. When the free corrosion potential of the B30 Cu-Ni alloy with inherent film is positive and maintained for a long time, pitting is easy to occur, which is not conducive to the corrosion resistance of B30 Cu-Ni alloy. It follows that the characteristics of free corrosion potential and its evolution of B30 Cu-Ni alloy with inherent films can be used as an index to evaluate the influence of the inherent films on the corrosion resistance of B30 Cu-Ni alloy.

Key wordsB30 Cu-Ni alloy    original film    potential    corrosion resistance    localized corrosion
收稿日期: 2025-01-26      32134.14.1005.4537.2025.037
ZTFLH:  TG174  
通讯作者: 刘贵昌,E-mail:gchliu@dlut.edu.cn,研究方向为金属腐蚀与防护
Corresponding author: LIU Guichang, E-mail: gchliu@dlut.edu.cn
作者简介: 王立芳,女,2000年生,硕士生
SampleNiFeMnCImpuritiesCu
A29.070.651.010.05< 0.7Bal.
B29.920.610.900.05< 0.7Bal.
表1  B30铜镍合金管材的化学成分
图1  B30铜镍合金管材样在海水中浸泡10和60 d后的表面SEM形貌
SamplePositionOClMnFeNiCu
A121.732.050.783.3742.329.76
222.761.630.792.7639.4932.57
320.622.341.063.9645.9426.07
B437.75.460.775.1139.6811.28
541.855.610.293.933.0615.3
62.120.10.380.821.8674.75
733.228.9700.855.4451.52
825.547.860.182.0410.7953.58
931.769.940.170.665.4252.05
C104.970.050.720.8830.3663.03
116.990.060.710.8628.4662.92
124.290.030.70.8828.2665.83
表2  图1中海水浸泡60 d的3种样品表面标记点处EDS成分分析结果
图2  B30铜镍合金管材试样在海水中浸泡60 d并去除腐蚀产物膜后的SEM形貌
图3  B30铜镍合金管材试样在海水中浸泡60 d后表面XPS分析
图4  B30铜镍合金管材试样表面腐蚀产物膜相组成XPS结果
图5  B30铜镍合金管材试样在海水中浸泡60 d后的开路电位随时间的变化曲线
图6  A试样在海水中浸泡60 d后的EIS谱图
图7  B试样在海水中浸泡60 d后的EIS 谱图
图8  C试样在海水中浸泡60 d后的EIS谱图
图9  电化学阻抗拟合等效电路

Time

d

Rs

kΩ·cm2

Rct

kΩ·cm2

CPE1

10-5 F·cm-2

n1

Rfout

kΩ·cm2

CPE2

10-5 F·cm-2

n2

Rfin

kΩ·cm2

CPE3

10-5 F·cm-2

n3
00.01217.731.270.89---119.309.370.75
10.0131.016.740.89---6.679.060.81
30.0178.829.480.81---11.345.610.81
50.01615.123.610.89---18.7916.320.87
70.01616.195.030.80---25.2923.950.83
100.01417.8117.710.83---52.202.100.86
150.01518.508.4220.900.0191.350.63118.002.510.73
200.01718.4211.450.900.0502.460.61148.600.930.77
250.01819.8311.010.870.0361.810.66153.301.150.98
300.01415.937.390.810.1383.580.56174.105.640.84
400.01219.2015.680.900.1430.940.67183.201.010.75
500.01021.9122.760.870.0261.800.66212.100.860.97
600.01622.2417.450.740.0900.770.69214.503.060.82
表3  A试样在海水中浸泡60 d后EIS拟合结果

Time

d

Rs

kΩ·cm2

Rct

kΩ·cm2

CPE1

10-5 F·cm-2

n1

Rfout

kΩ·cm2

CPE2

10-5 F·cm-2

n2

Rfin

kΩ·cm2

CPE3

10-5 F·cm-2

n3
00.01518.215.660.83---157.101.010.88
10.01713.1112.070.82---23.816.460.92
30.0140.8913.210.86---9.5113.670.83
50.0120.9912.360.89---9.167.070.94
70.0150.9411.320.88---6.8610.040.80
100.0130.9217.940.80---6.9211.580.83
150.0113.1020.190.780.295.830.9513.5720.960.50
200.0142.0622.430.921.205.010.885.4117.960.89
250.0152.0722.880.750.306.910.887.1512.940.70
300.0143.0224.540.951.082.240.9112.876.960.51
400.0154.6724.750.810.795.430.8512.0727.660.51
500.0121.7611.450.831.314.150.958.498.380.79
600.0162.9817.910.760.467.860.735.9815.290.55
表4  B试样在海水中浸泡60 d后的EIS拟合结果
Time / dRs / kΩ·cm2Rct / kΩ·cm2CPE1 / 10-5 F·cm-2n1W / 10-4 Ω-1s-0.5Rfin / kΩ·cm2CPE3 / 10-5 F·cm-2n3
00.0141.1741.680.72116.8---
10.0108.4220.730.88-13.3219.960.62
30.01019.3830.250.44-151.15.870.77
50.01022.9727.530.46-264.74.650.80
70.01226.909.810.55-374.33.950.84
100.01125.549.560.68-366.91.910.76
150.01026.523.730.69-346.92.990.91
200.01128.5510.450.57-362.02.170.71
250.01028.9012.710.67-351.01.820.80
300.01027.278.050.74-369.01.740.83
400.01030.346.780.77-363.01.130.81
500.01127.236.140.81-351.02.010.87
600.01229.184.010.68-360.31.550.88
表5  C试样在海水中浸泡60 d后的EIS拟合结果
图10  电荷转移电阻Rct和膜层电阻Rf随时间的变化曲线
图11  3种B30铜镍合金管材样在海水中浸泡60 d后的极化曲线
SamplesEcorr vs. SCE / mVIcorr / µA·cm-2Corrosion rate / µm·a-1
A sample-195.90.1541.76
B sample-165.71.96922.46
C sample-202.30.0560.64
表6  3种B30铜镍合金管材样品在海水中浸泡60 d后的极化曲线拟合结果
图12  3种B30铜镍合金管材样品在海水中浸泡60 d后的Mott-Schottky曲线
SamplesSlope pSlope nNA / cm-3ND / cm-3
A sample-8.42 × 10115.18 × 10112.36 × 10191.92 × 1019
B sample-9.47 × 1098.07 × 1092.10 × 10211.23 × 1021
C sample-6.43 × 1013-4.83 × 1017-
表7  图12中Mott-Schottky曲线拟合结果
图13  有原始膜的A和B试样表面SEM图
PositionCOMnFeNiCu
111.730.740.490.7426.7559.55
242.290.280.540.7518.2637.88
313.860.540.690.7523.8460.32
表8  图13中标记区域的EDS成分分析结果 (mass fraction / %)
图14  A和B试样原始膜的XPS谱图
图15  有、无原始膜的试样在海水中浸泡30 min后的开路电位和阻抗模值
图16  有原始膜的A和B试样开路电位随时间的变化曲线
图17  原始膜对后续腐蚀过程影响机理示意图
[1] Shi Z Y, Liu B, Liu Y, et al. Progress of corrosion behavior and anti-corrosion technology for typical copper-nickel alloys under marine environment [J]. Equip. Environ. Eng., 2020, 17(8): 38
[1] (石泽耀, 刘 斌, 刘 岩 等. 典型铜镍合金在海洋环境中腐蚀行为与防护技术研究进展 [J]. 装备环境工程, 2020, 17(8): 38)
[2] Jin T Z, Zhang W F, Li N, et al. Surface characterization and corrosion behavior of 90/10 copper-nickel alloy in marine environment [J]. Materials, 2019, 12: 1869
[3] Tong H T, Liu X H, Sui Y Q, et al. Failure analysis of 70/30 cupronickel tubes serving in a heat exchanger [J]. Eng. Fail. Anal., 2023, 152: 107460
[4] Chandra K, Mahanti A, Singh A P, et al. Microbiologically influenced corrosion of 70/30 cupronickel tubes of a heat-exchanger [J]. Eng. Fail. Anal., 2019, 105: 1328
[5] Zou J Q. Analysis of failures of CP-01 white bronze condenser in ARDS unit and countermeasures [J]. Corros. Prot. Petrochem. Ind., 2002, 19(5): 26
[5] (邹积强. ARDS装置CP-01白铜复水器失效分析及对策 [J]. 石油化工腐蚀与防护, 2002, 19(5): 26)
[6] North R F, Pryor M J. The influence of corrosion product structure on the corrosion rate of Cu-Ni alloys [J]. Corros. Sci., 1970, 10: 297
[7] Elragei O, Elshawesh F, Ezuber H M. Corrosion failure 90/10 cupronickel tubes in a desalination plant [J]. Desalin. Water Treat., 2010, 21: 17
[8] Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science [M]. 3rd ed. Shanghai: Shanghai Jiao Tong University Press, 2010: 37
[8] (胡赓祥, 蔡 珣, 戎咏华. 材料科学基础 [M]. 3版. 上海: 上海交通大学出版社, 2010: 37)
[9] Cui G Y. Corrosion behavior of copper-nickel alloys in seawater [J]. Dev. Appl. Mater., 1987, (3): 32
[9] (崔桂云. 铜镍合金在海水中的腐蚀行为 [J]. 材料开发与应用, 1987, (3): 32)
[10] Cigna R, Gusmano G, Zama M. Influence of surface finishes on corrosion behaviour of CN108 alloy for condenser tubes in sea water [J]. Mater. Chem. Phys., 1989, 23: 311
[11] Chi C Y, Xu L K, Lin C G, et al. Influence of pH on electrochemical behavior of 70/30 Cu-Ni alloy [J]. Equip. Environ. Eng., 2009, 6(3): 38
[11] (迟长云, 许立坤, 蔺存国 等. pH值变化对B30铜镍合金腐蚀电化学行为的影响 [J]. 装备环境工程, 2009, 6(3): 38)
[12] Li H, Sun M X, Du M, et al. Mechanism underlying the acceleration of pitting corrosion of B30 copper-nickel alloy by Pseudomonas aeruginosa [J]. Front. Microbiol., 2023, 14: 1149110
[13] Lu J C, Wang Z B, Hu H X, et al. Understanding localized corrosion mechanism of 90/10 copper-nickel alloy in flowing NaCl solution induced by partial coverage of corrosion products films [J]. Corros. Sci., 2024, 227: 111716
[14] Wang X, Li M, Liu F, et al. Effect of temperature on erosion-corrosion behavior of B10 Cu-Ni alloy pipe [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1329
[14] (王 晓, 李 明, 刘 峰 等. 温度对B10铜镍合金管冲刷腐蚀行为影响规律研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1329)
[15] Chen H L, Ma L, Huang G S, et al. Effects of pH value, temperature and salinity on film formation of B30 Cu-Ni alloy in seawater [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 481
[15] (陈翰林, 马 力, 黄国胜 等. pH值、温度和盐度对B30铜镍合金在海水中成膜的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 481)
[16] Pu Y N, Cheng Y F, Dou W W, et al. Microbiologically influenced corrosion behavior of 70/30 Cu-Ni alloy exposed to carbon starvation environments with different aggressiveness: Pitting mechanism induced by Desulfovibrio vulgaris [J]. Corros. Sci., 2023, 222: 111427
[17] Ma A L, Jiang S L, Zheng Y G, et al. Corrosion product film formed on the 90/10 copper-nickel tube in natural seawater: composition/structure and formation mechanism [J]. Corros. Sci., 2015, 91: 245
[18] Zhu X L, Lei T Q. Characteristics and formation of corrosion product films of 70Cu-30Ni alloy in seawater [J]. Corros. Sci., 2002, 44: 67
[19] Wang B C. Material Corrosion & Protection [M]. Beijing: Peking University Press, 2012: 64
[19] (王保成. 材料腐蚀与防护 [M]. 北京: 北京大学出版社, 2012: 64)
[20] Yuan S J, Pehkonen S O. Surface characterization and corrosion behavior of 70/30 Cu-Ni alloy in pristine and sulfide-containing simulated seawater [J]. Corros. Sci., 2007, 49: 1276
[21] Wang X, Liu F, Li Y, et al. Corrosion behavior of B10 Cu-Ni alloy pipe in static and dynamic seawater [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 119
[21] (王 晓, 刘 峰, 李 焰 等. 静态和动态海水中B10铜镍合金管的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 119)
[22] Büchler M, Schmuki P, Böhni H. A light reflectance technique for thickness measurements of passive films [J]. Electrochim. Acta, 1998, 43: 635
[23] Teng P, Zhong J Y, Kuang X Y, et al. Effect of microstructure on local corrosion behavior of ultra-high strength stainless steel 10Cr13Co13Mo5Ni3W1VE [J]. J. Mater. Eng., 2024, 52(5): 103
[23] (滕 鹏, 钟锦岩, 匡效禹 等. 超高强度不锈钢10Cr13Co13Mo5Ni3W1VE微观组织对局部腐蚀行为的影响 [J]. 材料工程, 2024, 52(5): 103)
[24] Yang C F, Li Y, Chen Y, et al. Mechanochemical synthesis of γ-Graphyne with enhanced lithium storage performance [J]. Small, 2019, 15: 1804710
[25] Zhang B B, Lin J, Song X N, et al. Identification of oxidation states in γ-graphyne by computational XPS and NEXAFS spectra [J]. Appl. Surf. Sci., 2023, 609: 155134
[26] Zhang D F, Tang Y X, Qiu X X, et al. Use of synergistic effects of the co-catalyst, p-n heterojunction, and porous structure for improvement of visible-light photocatalytic H2 evolution in porous Ni2O3/Mn0.2Cd0.8S/Cu3P@Cu2S [J]. J. Alloy. Compd., 2020, 845: 155569
[1] 李科, 李天雷, 曹晓燕, 姜流, 王雅熙, 肖泽渝, 钟显康. 316L不锈钢焊接接头在含S-H2S环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(6): 1725-1733.
[2] 黄泽邦, 刘光明, 范文学, 徐睿中, 朱炎彬, 刘晨辉. 钝化时间对304不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1741-1747.
[3] 何燕, 刘燕, 田华, 陈晔. 低温扩散预处理对含B超级奥氏体不锈钢S31254析出相及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1773-1778.
[4] 郭耀威, 艾士民, 房大然, 林小娉, 杨连威, 郑哲皓. 高压凝固Mg-xAl (x = 3, 5, 7, 9, 12)合金组织结构及耐腐蚀性能[J]. 中国腐蚀与防护学报, 2025, 45(5): 1265-1276.
[5] 冯宇芹, 郭同翰, 余韦汉, 吴伟, 张大全. Sb对高强结构钢在东海环境中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1300-1308.
[6] 何武豪, 刘阳, 杨思懿, 张韶栋, 吴伟, 张俊喜. 敏化处理对传统和增材制造316L不锈钢电化学和晶间腐蚀的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1331-1340.
[7] 张雄斌, 党恩, 于晓婧, 汤玉斐, 赵康. 油气田用马氏体不锈钢腐蚀性能研究现状与进展[J]. 中国腐蚀与防护学报, 2025, 45(4): 837-848.
[8] 周谦永, 赖漾, 李谦. 酸洗工艺对不同锡量二次冷轧镀锡板耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 939-946.
[9] 麻衡, 王中学, 逄昆, 张庆普, 崔中雨. 低合金钢中腐蚀活性夹杂物诱发局部腐蚀萌生行为研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 1005-1013.
[10] 陈宇强, 冉光林, 陆丁丁, 黄磊, 曾立英, 刘阳, 支倩. 循环强化对7075铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1051-1060.
[11] 张国庆, 余直霞, 王岳松, 王智, 金正宇, 刘宏伟. 海上超临界二氧化碳环境中含水率和温度对A106钢腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 1061-1069.
[12] 宋晓稳, 白苗苗, 陈娜娜, 高逸晖, 冯亚丽, 刘倩倩, 张尧尧, 卢琳, 吴俊升, 肖葵. 海南滨海大气环境中棘孢曲霉对铝合金腐蚀行为影响[J]. 中国腐蚀与防护学报, 2025, 45(3): 631-642.
[13] 汤熠鑫, 张飞, 崔中雨, 崔洪芝, 李燚周. 氢对2205双相不锈钢在3.5%NaCl溶液中缝隙腐蚀行为影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 431-437.
[14] 陆添爱, 蒋文昊, 吴伟, 张俊喜. 基于接地材料功能需求的耐蚀铸铁表面改性研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1443-1453.
[15] 魏珂正, 蒋文龙, 龚奕维, 裘欣, 丁汉林, 项重辰, 王子健. 时效时间对锻态AZ80镁合金第二相析出及柱面取向表面腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1557-1565.