Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (5): 1265-1276     CSTR: 32134.14.1005.4537.2024.333      DOI: 10.11902/1005.4537.2024.333
  研究报告 本期目录 | 过刊浏览 |
高压凝固Mg-xAl (x = 3, 5, 7, 9, 12)合金组织结构及耐腐蚀性能
郭耀威1, 艾士民1, 房大然1,2, 林小娉1,2(), 杨连威1,2, 郑哲皓1
1 东北大学材料科学与工程学院 沈阳 110819
2 东北大学秦皇岛分校资源与材料学院 秦皇岛 066004
Microstructure and Corrosion Resistance of High-pressure Solidified Mg-xAl (x = 3, 5, 7, 9, 12) Alloys
GUO Yaowei1, AI Shimin1, FANG Daran1,2, LIN Xiaoping1,2(), YANG Lianwei1,2, ZHENG Zhehao1
1 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
引用本文:

郭耀威, 艾士民, 房大然, 林小娉, 杨连威, 郑哲皓. 高压凝固Mg-xAl (x = 3, 5, 7, 9, 12)合金组织结构及耐腐蚀性能[J]. 中国腐蚀与防护学报, 2025, 45(5): 1265-1276.
Yaowei GUO, Shimin AI, Daran FANG, Xiaoping LIN, Lianwei YANG, Zhehao ZHENG. Microstructure and Corrosion Resistance of High-pressure Solidified Mg-xAl (x = 3, 5, 7, 9, 12) Alloys[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1265-1276.

全文: PDF(28398 KB)   HTML
摘要: 

利用CS-1V型六面顶高压设备重熔Mg-xAl (x = 3,5,7,9,12,质量分数,%)合金,采用SEM、XPS以及电化学实验等研究Mg-xAl合金组织结构及耐蚀性。结果表明,经4 GPa高压凝固后,Mg-Al合金的脱溶转变被抑制,共晶成分点及最大溶解度点右移,与常压凝固相比,高压凝固Mg-xAl合金最大基体固溶度增加0.38%~3.43%,β-Mg17Al12相含量降低0.1%~14.9%;且β-Mg17Al12相形貌和分布得到极大改善。因此,高压凝固Mg-xAl合金的电偶腐蚀倾向降低,耐腐蚀性能明显提升,其中Mg-5Al和Mg-9Al合金的耐蚀性最佳。

关键词 Mg-Al合金高压凝固组织结构耐蚀性    
Abstract

Mg-xAl (x = 3, 5, 7, 9, 12, mass fraction, %) alloys were prepared using both atmospheric pressure solidification and high-pressure solidification methods. The microstructure and corrosion resistance of the alloys were investigated using electrochemical tests, SEM and XPS. The results indicated that, after high pressure solidification at 4 GPa, the desolvation transition was inhibited for the alloy, and the eutectic composition point and maximum solubility point shifted to the right. Compared to atmospheric pressure solidification, the maximum matrix solid solubility of the high-pressure solidified Mg-Al alloys increased by 0.38%-3.43%, while the content of the eutectic β-Mg17Al12 phase decreased by 0.1%-14.9%. Furthermore, high pressure solidification could effectively improve the morphology and distribution of β-Mg17Al12. As a result, the propensity for galvanic coupling corrosion in the high-pressure solidified alloys decreased, and their corrosion resistance was significantly enhanced. Among the high-pressure solidified alloys with different Al contents, the Mg-5Al and Mg-9Al alloys exhibited the best corrosion resistance, which may be attributed to the better protective effect of their surface corrosion products on the substrate.

Key wordsMg-Al alloys    high pressure solidification    organization    corrosion resistance
收稿日期: 2024-10-10      32134.14.1005.4537.2024.333
ZTFLH:  T146.2  
基金资助:国家自然科学基金(51675092);河北省自然科学基金(E2022501001);河北省自然科学基金(E2022501006)
通讯作者: 林小娉,E-mail:lxping3588@163.com,研究方向为有色金属材料
Corresponding author: LIN Xiaoping, E-mail: lxping3588@163.com
作者简介: 郭耀威,男,2000年生,硕士生
Serial numberAlloy nameActual compositionMelting temperature / °C
1Mg-3AlMg-2.97Al870
2Mg-5AlMg-5.09Al850
3Mg-7AlMg-6.96Al830
4Mg-9AlMg-8.87Al810
5Mg-12AlMg-12.05Al800
表1  Mg-xAl (x = 3,5,7,9,12,%)合金成分
图1  CS-1V型六面顶压机和高压凝固试样装配示意图
图2  Al含量对常规铸造Mg-Al合金显微组织的影响
图3  Al含量对Mg-Al合金中β-Mg17Al12相数量和基体中Al固溶量的影响
图4  Al含量对高压凝固Mg-xAl合金显微组织的影响
图5  高压凝固对Mg-xAl (x = 3,5,7,9,12) 合金腐蚀速率的影响
图6  Mg-xAl (x = 3,5,7,9,12)合金的极化曲线及Ecorr与Icorr随Al含量的变化
图7  常规铸造和高压凝固Mg-xAl (x = 3,5,7,9,12)合金的Nyquist图
图8  常规铸造与高压凝固Mg-xAl合金的Bode图
图9  不同凝固压力下高压凝固Mg-xAl (x = 3, 5, 7, 9,12)合金极化电阻Rp值
图10  常规铸造Mg-Al合金宏观腐蚀形貌
图11  高压凝固Mg-Al合金宏观腐蚀形貌
图12  常规铸造Mg-Al合金微观腐蚀形貌
图13  高压凝固Mg-Al合金在3.5%NaCl水溶液中浸泡2 h后的SEM腐蚀形貌
图14  常规铸造及高压凝固Mg-Al合金表面腐蚀形貌及横截面SEM像和EDS元素面扫描
图15  常规铸造及高压凝固Mg-xAl合金在3.5%NaCl溶液中浸泡24 h的XPS光谱
SampleMg 1sO 1sAl 2p
5%Al-100 kPa29.9766.213.81
5%Al-4 GPa33.2162.734.06
9%Al-4 GPa26.4465.847.73
表2  高压凝固Mg-xAl (x = 5, 9)合金表面化学成分 (atomic fraction / %)
[1] Radha R, Sreekanth D. Insight of magnesium alloys and composites for orthopedic implant applications-a review [J]. J. Magnes. Alloy., 2017, 5: 286
[2] Zhang Z M, Yu J M, Xue Y, et al. Recent research and development on forming for large magnesium alloy components with high mechanical properties [J]. J. Magnes. Alloy., 2023, 11: 4054
[3] Li T, Song J F, Zhang A, et al. Progress and prospects in Mg-alloy super-sized high pressure die casting for automotive structural components [J]. J. Magnes. Alloy., 2023, 11: 4166
[4] Hsu Y, Lu Y P, Wang S Y, et al. Magnesium alloys in tumor treatment: current research status, challenges and future prospects [J]. J. Magnes. Alloy., 2023, 11: 3399
[5] Bai J Y, Yang Y, Wen C, et al. Applications of magnesium alloys for aerospace: a review [J]. J. Magnes. Alloy., 2023, 11: 3609
[6] Xiao Y T, Zhang X F, Wang C, et al. Recent advances in electrochemical performance of Mg-based electrochemical energy storage materials in supercapacitors: enhancement and mechanism [J]. J. Magnes. Alloy., 2024, 12: 35
[7] De Oliveira M C L, Da Silva R M P, Souto R M, et al. A review on the synergism between corrosion and fatigue of magnesium alloys: Mechanisms and processes on the micro-scale [J]. J. Magnes. Alloy., 2024, 12: 3062
[8] Xu C, Zhang Z Q, Dai P L, et al. Preparation and its effect of fibrous γ-Mg17Al12 eutectic phase on mechanical properties of Mg alloy [J]. Foundry, 2021, 70: 915
[8] 徐 畅, 张祝群, 代鹏林 等. 纤维状γ-Mg17Al12共晶相的制备及其对Mg合金力学性能的影响 [J]. 铸造, 2021, 70: 915
[9] Yin Z, He R H, Chen Y, et al. Effects of surface micro-galvanic corrosion and corrosive film on the corrosion resistance of AZ91-xNd alloys [J]. Appl. Surf. Sci., 2021, 536: 147761
[10] Ubeda C, Garces G, Adeva P, et al. The role of the beta-Mg17Al12 phase on the anomalous hydrogen evolution and anodic dissolution of AZ magnesium alloys [J]. Corros. Sci., 2020, 165: 108384
[11] Liu Z Q, He X X, Qi K, et al. Galvanic corrosion behavior for galvanic couple of AZ91D Mg-alloy/2002 Al-alloy in 0.5 mg/L NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1016
[11] 刘泽琪, 何潇潇, 祁 康 等. AZ91D Mg合金和2002铝合金在0.5 mg/L NaCl溶液中的电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1016
doi: 10.11902/1005.4537.2021.355
[12] Shao Z, Nishimoto M, Muto I, et al. Fabrication of a model specimen for understanding micro-galvanic corrosion at the boundary of α-Mg and β-Mg17Al12 [J]. J. Magnes. Alloy., 2023, 11: 137
[13] Yang Y, Deng Y C, Zhang R F, et al. Influence of β-Mg17Al12 and Al-Mn intermetallic compounds on the corrosion behaviour of cast and solution treated Mg-Al-Zn-Mn alloys [J]. Corros. Sci., 2023, 222: 111363
[14] Xu H Y, Li Z Y. Galvanic corrosion of AZ91D magnesium alloy [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 298
[14] 徐宏妍, 李智勇. AZ91D Mg合金电偶腐蚀的研究 [J]. 中国腐蚀与防护学报, 2013, 33: 298
[15] Song G L, Atrens A, Dargusch M. Influence of microstructure on the corrosion of diecast AZ91D [J]. Corros. Sci., 1998, 41: 249
[16] Yang J, Yi D Q, Deng S H, et al. Effect of trace Ce on the microstructure and corrosion resistance of AZ91 magnesium alloy [J]. J. Chin. Soc. Corros. Prot., 2008, 28: 205
[16] 杨 洁, 易丹青, 邓姝皓 等. 微量Ce对AZ91镁合金微观组织及耐蚀性的影响 [J]. 中国腐蚀与防护学报, 2008, 28: 205
[17] Woo S K, Suh B C, Kim H S, et al. Effect of Al addition on corrosion behavior of high-purity Mg in terms of processing history [J]. J. Magnes. Alloy., 2023, 11: 851
[18] Yang Z Q, Ma A B, Xu B Q, et al. Corrosion behavior of AZ91 Mg alloy with a heterogeneous structure produced by ECAP [J]. Corros. Sci., 2021, 187: 109517
[19] Wei K Z, Jiang W L, Gong Y W, et al. Effect of aging time on precipitation of second phase and corrosion performance of prismatic plane of as-forged AZ80 Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1557
[19] 魏珂正, 蒋文龙, 龚奕维 等. 时效时间对锻态AZ80镁合金第二相析出及柱面取向表面腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2024, 44: 1557
doi: 10.11902/1005.4537.2024.183
[20] Esmaily M, Svensson J E, Fajardo S, et al. Fundamentals and advances in magnesium alloy corrosion [J]. Prog. Mater. Sci., 2017, 89: 92
[21] Chen J Y, Zheng H F, Zeng Y C. High pressure-a new technology of modern science [J]. Sci. Technol. Inf., 2000, (8): 22
[21] 陈晋阳, 郑海飞, 曾贻春. 高压——现代科学的一门新技术 [J]. 科技信息, 2000, (8): 22
[22] Jie J C, Zou C M, Brosh E, et al. Microstructure and mechanical properties of an Al-Mg alloy solidified under high pressures [J]. J. Alloy. Compd., 2013, 578: 394
[23] Ma P, Wei Z J, Jia Y D, et al. Effect of high pressure solidification on tensile properties and strengthening mechanisms of Al-20Si [J]. J. Alloy. Compd., 2016, 688: 88
[24] Lin X P, Dai P L, Xu C, et al. Solute redistribution and mechanism of structure refinement of Mg-Al alloy during solidification under high pressure [J]. J. Alloy. Compd., 2022, 910: 164777
[25] Wang Y T, Yuan X G, Yu B Y, et al. Research progress of amorphous alloys under high pressure conditions [J]. Mater. Rep., 2010, 24(suppl. 2) : 499
[25] 王耘涛, 袁晓光, 于宝义 等. 高压条件下非晶态合金的研究进展 [J]. 材料导报, 2010, 24(): 499
[26] Huang J F, Song G L. Research progress on corrosion testing and analysis of Mg-alloys [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 519
[26] 黄居峰, 宋光铃. 镁合金腐蚀测试与分析研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 519
doi: 10.11902/1005.4537.2023.185
[27] Ma Y Z, Wang D X, Li H X, et al. Microstructure, mechanical properties and corrosion behavior of quaternary Mg-1Zn-0.2Ca-xAg alloy wires applied as degradable anastomotic nails [J]. Trans. Nonferrous Met. Soc. China, 2021, 31: 111
[28] Chang F C, Song Y W, Dong K H, et al. Study on the synergistic effect of second phases and product films to significantly improve the corrosion resistance of Mg-Gd-Y-Nd alloy [J]. Corros. Sci., 2024, 237: 112304
[29] Qiu W, Yan R, Liu K D, et al. The semi-continuous (Mg, Al)2Ca second phase on Mg-Al-Ca-Mn alloys as an efficient anti-corrosion anode for Mg-air batteries [J]. J. Alloy. Compd., 2024, 990: 174387
[30] Bao L, Li K, Zheng J Y, et al. Surface characteristics and stress corrosion behavior of AA 7075-T6 aluminum alloys after different shot peening processes [J]. Surf. Coat. Technol., 2022, 440: 128481
[31] Chen Y W, Zhou J, Liu Y, et al. Research progress in corrosion mechanism and regulation of magnesium alloys [J]. Chin. J. Nonferrous Met, 2023, 33: 3152
[31] 陈雅薇, 周 济, 刘 勇 等. 镁合金腐蚀机制与调控研究进展 [J]. 中国有色金属学报, 2023, 33: 3152
[32] Kim J Y, Byeon J W. Quantitative relation of discontinuous and continuous Mg17Al12 precipitates with corrosion rate of AZ91D magnesium alloy [J]. Mater. Charact., 2021, 174: 111015
[1] 冯宇芹, 郭同翰, 余韦汉, 吴伟, 张大全. Sb对高强结构钢在东海环境中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1300-1308.
[2] 周谦永, 赖漾, 李谦. 酸洗工艺对不同锡量二次冷轧镀锡板耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 939-946.
[3] 李维鹏, 罗坤杰, 王惠生, 陈嘉诚, 韩姚磊, 庞晓露, 彭群家, 乔利杰. 沉淀相对镍基718合金高温高压水环境应力腐蚀裂纹萌生行为影响研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 947-955.
[4] 张雄斌, 党恩, 于晓婧, 汤玉斐, 赵康. 油气田用马氏体不锈钢腐蚀性能研究现状与进展[J]. 中国腐蚀与防护学报, 2025, 45(4): 837-848.
[5] 陈宇强, 冉光林, 陆丁丁, 黄磊, 曾立英, 刘阳, 支倩. 循环强化对7075铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1051-1060.
[6] 樊嘉骏, 董立谨, 马成, 张兹瑜, 明洪亮, 韦博鑫, 彭庆, 王勤英. 掺氢天然气环境下管线钢氢致疲劳裂纹扩展研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 296-306.
[7] 魏珂正, 蒋文龙, 龚奕维, 裘欣, 丁汉林, 项重辰, 王子健. 时效时间对锻态AZ80镁合金第二相析出及柱面取向表面腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1557-1565.
[8] 陆添爱, 蒋文昊, 吴伟, 张俊喜. 基于接地材料功能需求的耐蚀铸铁表面改性研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1443-1453.
[9] 马晋遥, 董楠, 郭振森, 韩培德. B、Ce微合金化对S31254超级奥氏体不锈钢析出相及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1610-1616.
[10] 程永贺, 付俊伟, 赵茂密, 沈云军. 高熵合金耐蚀性研究进展[J]. 中国腐蚀与防护学报, 2024, 44(5): 1100-1116.
[11] 田梦真, 王勇, 李涛, 汪川, 郭泉忠, 郭建喜. 电参数对AZ31B镁合金微弧氧化膜能耗及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 1064-1072.
[12] 巫海亮, 陈宇强, 黄亮, 顾宏宇, 孙宏博, 刘佳俊, 王乃光, 宋宇峰. 高铁散热器用3003铝合金焊接隔板的腐蚀机理研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1081-1088.
[13] 张吉昊, 徐亚程, 贾学远, 高荣杰. B10铜合金超双疏表面的制备及其性能研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 909-917.
[14] 何佳璇, 张羽彤, 管旭东, 唐建华, 黄海, 赵旭辉, 唐聿明, 左禹. 铝合金微通道换热器的腐蚀防护现状与进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 993-1000.
[15] 师超, 李嘉浩, 王荣祥, 张博, 周兰欣, 刘光明, 邵亚薇. 不同偏压对45#钢电弧离子镀铝层耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 323-334.