Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (4): 1051-1060     CSTR: 32134.14.1005.4537.2024.287      DOI: 10.11902/1005.4537.2024.287
  研究报告 本期目录 | 过刊浏览 |
循环强化对7075铝合金腐蚀行为的影响
陈宇强1, 冉光林1, 陆丁丁1(), 黄磊2, 曾立英2, 刘阳1, 支倩1
1 湖南科技大学材料科学与工程学院 湘潭 411201
2 湘潭市工矿电传动车辆质量检验中心 湘潭 411200
Effect of Cyclic Strengthening on Corrosion Behavior of 7075 Al-alloy
CHEN Yuqiang1, RAN Guanglin1, LU Dingding1(), HUANG Lei2, ZENG Liying2, LIU Yang1, ZHI Qian1
1 School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
2 Xiangtan Industrial and Mining Electric Transmission Vehicle Quality Inspection Center, Xiangtan 411200, China
引用本文:

陈宇强, 冉光林, 陆丁丁, 黄磊, 曾立英, 刘阳, 支倩. 循环强化对7075铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1051-1060.
Yuqiang CHEN, Guanglin RAN, Dingding LU, Lei HUANG, Liying ZENG, Yang LIU, Qian ZHI. Effect of Cyclic Strengthening on Corrosion Behavior of 7075 Al-alloy[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 1051-1060.

全文: PDF(20068 KB)   HTML
摘要: 

7075航空铝合金在沿海地区服役环境下,因海水飞溅或大气盐雾腐蚀而经常出现腐蚀损伤。因此,针对7075铝合金强度高但耐蚀性差这一问题,采用室温循环强化(Cyclic strengthening,CS)工艺以提高其强度及耐蚀性。与传统峰时效T6相比,7075铝合金经循环强化后表现出更好的耐蚀性,在电化学测试中具有更高的自腐蚀电位和更高的阻抗值。在NaCl溶液中,T6试样的晶间腐蚀深度为58 μm,而CS试样的腐蚀深度仅为15 μm;在盐雾腐蚀中,CS试样形成的腐蚀坑和腐蚀微裂纹比T6试样更小。T6和CS试样的腐蚀产物中均含有Zn(OH)2和ZnCl2,其形成过程分别为T6试样晶界处的η′(MgZn2)相、CS试样中的原子团簇与铝基体之间电化学反应。经过CS工艺处理后,7075铝合金晶体内部产生大量位错与原子团簇,这阻碍位错运动并提高自腐蚀电位,进而提高材料的强度及耐蚀性。

关键词 7075铝合金循环强化耐蚀性能原子团簇    
Abstract

7075 Al-alloy suffered often from corrosion damages during service in coastal area environments, due to seawater splash or salt atmosphere corrosion. Therefore, for the problem of high strength but poor corrosion resistance of 7075 Al-alloy, a cyclic strengthening (CS) process at ambient temperature is adopted to improve its strength and corrosion resistance. Compared with the traditional peak aging T6, the cyclic strengthening treated 7075 Al-alloy shows better corrosion resistance with higher free-corrosion potential and higher impedance value in electrochemical test. In NaCl solution, the intergranular corrosion depth of the T6 treated alloy was 58 μm, while that of the CS treated one was only 15 μm. The corrosion pits and corrosion microcracks formed for the CS alloy are smaller than that of the T6 ones in salt spray corrosion test. The corrosion products of both T6 and CS alloy contain Zn(OH)2 and ZnCl2, the formation of which is due to the electrochemical reaction between the η′(MgZn2) phase at the grain boundaries of the T6 alloy, and the clusters of atoms in the CS alloy and the Al-matrix, respectively. After the CS process, a large number of dislocations and clusters of atoms are generated within the 7075 Al-alloy, which hinders the dislocation movement and increases the free-corrosion potential, thereby improving the strength and corrosion resistance of the 7075 Al-alloy.

Key words7075 aluminum alloy    cycle strengthening    corrosion resistance    atomic clusters
收稿日期: 2024-09-05      32134.14.1005.4537.2024.287
ZTFLH:  TG179  
基金资助:湖南省自然科学基金(2023JJ10019)
通讯作者: 陆丁丁,E-mail:ludingding@hnust.edu.cn,研究方向为轻量化合金材料与技术
Corresponding author: LU Dingding, E-mail: ludingding@hnust.edu.cn
作者简介: 陈宇强,男,1984年生,博士生
图1  7075铝合金试样的加工尺寸与T6、CS工艺参数
图2  7075铝合金的一次或多次循环强化滞回线与循环-应力图
图3  经T6处理以及不同参数下CS处理的7075铝合金应力-应变曲线以及强度和延伸率柱状图
ProcessTensile strength / MPaYield strength / MPaElongation / %
T66165335.3
CS (optimized)5404166.9
Solution37116411.5
表1  T6以及最佳参数下CS处理的7075铝合金力学性能数据
图4  T6、CS处理的7075铝合金的TEM图像
图5  T6、CS处理的7075铝合金的晶内HRTEM图像
图6  T6、CS处理的7075铝合金极化曲线与阻抗图
ProcessEcorr vs.SCE / VIcorr / μA·cm-2Rct / Ω·cm2
T6-0.870.471.61 × 103
CS-0.690.575.69 × 103
表2  T6、CS处理的7075铝合金极化曲线与阻抗测试结果
图7  T6、CS处理的7075铝合金试样在3.5%NaCl溶液中浸泡7 d后的XPS图谱
图8  T6、CS处理的7075铝合金晶间腐蚀6 h后的表面及截面形貌
图9  T6、CS处理的7075铝合金经12、24和48 h晶间腐蚀后的截面形貌
图10  T6、CS处理的7075铝合金的腐蚀时间-腐蚀深度曲线
图11  T6、CS处理的7075铝合金试样经盐雾腐蚀后表面貌
图12  T6、CS处理的7075铝合金的腐蚀机理模型
[1] Li B B, Wang Y Q, Zhi X H, et al. A review on the research of the 7xxx series high strength aluminum alloys as structural material in China [J]. Prog. Steel Build. Struct., 2021, 23(7): 1
[1] (李贝贝, 王元清, 支新航 等. 我国7xxx系高强铝合金及其研究进展 [J]. 建筑钢结构进展, 2021, 23(7): 1)
[2] LI H, Yan W J, Zhang Y, et al. Research progress of hot crack in fusion welding of advanced aeronautical materials [J]. J. Mater. Eng., 2022, 50(2): 50
doi: 10.11868/j.issn.1001-4381.2021.000676
[2] (李 红, 闫维嘉, 张 禹 等. 先进航空材料焊接过程热裂纹研究进展 [J]. 材料工程, 2022, 50(2): 50)
[3] Gao Z G, He Y T, Zhang S, et al. Research on corrosion damage evolution of aluminum alloy for aviation [J]. Appl. Sci., 2020, 10: 7184
[4] Li S S, Yue X, Li Q Y, et al. Development and applications of aluminum alloys for aerospace industry [J]. J. Mater. Res. Technol., 2023, 27: 944
[5] Yang K, Jin P, Fan C Z. Study on corrosion damage distribution and failure law of naval aircraft structure [J]. Aeronaut. Comput. Techniq., 2010, 40(3): 65
[5] (杨 凯, 金 平, 范存智. 飞机结构腐蚀损伤分布及失效规律研究 [J]. 航空计算技术, 2010, 40(3): 65)
[6] Altas E, Bati S, Rajendrachari S, et al. Comprehensive analysis of mechanical properties, wear, and corrosion behavior of AA7075-T6 alloy subjected to cryogenic treatment for aviation and defense applications [J]. Surf. Coat. Technol., 2024, 490: 131101
[7] Gürgen S, Sackesen İ, Kuşhan M C. Fatigue and corrosion behavior of in-service AA7075 aircraft component after thermo-mechanical and retrogression and re-aging treatments [J]. Proc. Inst. Mech. Eng., 2019, 233L: 1764
[8] Li C X, Xu J, Li J F, et al. Comparison of mechanical properties and corrosion behaviors of 7075 aluminum alloy at various aging systems [J]. Alum. Fabricat., 2009, (5): 10
[8] (李朝兴, 徐 静, 李劲风 等. 不同时效制度7075铝合金力学性能及腐蚀性能综合比较研究 [J]. 铝加工, 2009, (5): 10)
[9] Mancha-Molinar H, López H, Silva A, et al. Role of T7 heat treating on the dimensional stability of automotive A319 Al alloys [R]. Detroit Michigan: SAE, 2004
[10] Kuang X Q, Li R L, Ji Q Q, et al. Effects of different heat treatments on mechanical properties and corrosion resistance of Al-7.95Zn-1.84Mg-0.65Cu aluminum alloy [J]. J. Northwest. Polytech. Univ., 2020, 38: 596
[10] (匡秀琴, 李瑞雷, 季清清 等. 不同热处理对Al-7.95Zn-1.84Mg-0.65Cu合金力学性能和耐腐蚀性能的影响 [J]. 西北工业大学学报, 2020, 38: 596)
[11] Zhang Y, Zhang L T, Gao X, et al. Tailoring precipitate distribution in 2024 aluminum alloy for improving strength and corrosion resistance [J]. J. Mater. Sci. Technol., 2024, 194: 16
doi: 10.1016/j.jmst.2023.12.055
[12] Sun W W, Zhu Y M, Marceau R, et al. Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity [J]. Science, 2019, 363(6430): 972
doi: 10.1126/science.aav7086 pmid: 30819960
[13] Zhang Y, Zhu Y M, Marceau R K W, et al. Enhancing the strength and sensitization resistance of 5xxx alloys via nanoscale clustering induced by room-temperature cyclic plasticity [J]. Corros. Sci., 2024, 227: 111729
[14] Cao F H, Zhang Z, Li J F, et al. Exfoliation corrosion of aluminum alloy AA7075 examined by electrochemical impedance spectroscopy [J]. Mater. Corros., 2004, 55: 18
[15] Wang B, Zhang L W, Su Y, et al. Investigation on the corrosion behavior of aluminum alloys 3A21 and 7A09 in chloride aqueous solution [J]. Mater. Des., 2013, 50: 15
[16] Yang X K, Zhang L W, Zhang S Y, et al. Properties degradation and atmospheric corrosion mechanism of 6061 aluminum alloy in industrial and marine atmosphere environments [J]. Mater. Corros., 2017, 68: 529
[17] Li Z, Zhang Z, Chen X G. Microstructure, elevated-temperature mechanical properties and creep resistance of dispersoid-strengthened Al-Mn-Mg 3xxx alloys with varying Mg and Si contents [J]. Mater. Sci. Eng., 2017, 708A: 383
[18] Dong C F, Xiao K, Xu L, et al. Characterization of 7A04 aluminum alloy corrosion under atmosphere with chloride ions using electrochemical techniques [J]. Rare Met. Mater. Eng., 2011, 40: 275
[19] Zhan D D, Wang C, Qian J Y, et al. Effect of trace Cl- and Cu2+ ions on corrosion behavior of 3A21 al-alloy in ethylene glycol coolant [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 383
[19] (战栋栋, 王 成, 钱吉裕 等. 痕量Cl-和Cu2+对3A21铝合金在乙二醇冷却液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 383)
doi: 10.11902/1005.4537.2020.082
[20] Zhang F, Nilsson J O, Pan J S. In situ and operando AFM and EIS studies of anodization of Al 6060: influence of intermetallic particles [J]. J. Electrochem. Soc., 2016, 163: C609
[21] Zhang Y L, Yang H F, Sun P, et al. Effect of aging time on precipitation of MgZn2 and microstructure and properties of 7075 aluminum alloy [J]. J. Mater. Eng. Perform., 2024, 33: 6601
[22] Taşgın Y, Ergin R. Investigation of the effects of deformation aging applied to AA7075 aluminum alloy on mechanical and metallographic properties [J]. J. Mater. Eng. Perform., 2022, 31: 4583
[23] Liu D Q, Ke L M, Xu W P, et al. Intergranular corrosion behavior of friction-stir welding joint for 20 mm thick plate of 7075 Al-alloy [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 293
[23] (刘德强, 柯黎明, 徐卫平 等. 7075厚板铝合金搅拌摩擦焊接头晶间腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2017, 37: 293)
doi: 10.11902/1005.4537.2016.030
[24] Xu B, Ou H, Liu Q X X, et al. Property of electromagnetic welded joints of 5052 aluminum alloy and HC420LA high strength steel in salt fog corrosion [J]. China Mech. Eng., 2019, 30: 1506
[24] (许 冰, 欧 航, 柳泉潇潇 等. 5052铝合金-HC420LA高强钢磁脉冲焊接接头盐雾腐蚀性能 [J]. 中国机械工程, 2019, 30: 1506)
[25] El Garchani F, Kabiri M R. Evaluation of AA 7075-T6 alloy's corrosion behavior using salt spray test [A]. The 17th International Conference Interdisciplinarity in Engineering [C]. Cham, 2023: 1
[26] Li B, Fan L, Sun B, et al. Corrosion mechanism of aluminum alloy materials under high corrosion conditions [J]. J. Chongqing Univ., 2023, 46(5): 31
[26] (李 波, 樊 磊, 孙 博 等. 高腐蚀条件下用铝合金材料腐蚀机理 [J]. 重庆大学学报, 2023, 46(5): 31)
[27] Liu X, Liu H C, Li W P, et al. Corrosion fatigue behavior of 7075 aluminum alloy in saline water environment at different temperatures [J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 2850
[27] (刘 轩, 刘慧丛, 李卫平 等. 7075铝合金在不同温度盐水环境中的腐蚀疲劳行为 [J]. 航空学报, 2014, 35: 2850)
[28] Liu Y R, Pan Q L, Li H, et al. Revealing the evolution of microstructure, mechanical property and corrosion behavior of 7A46 aluminum alloy with different ageing treatment [J]. J. Alloy. Compd., 2019, 792: 32
[29] Ebrahimi H, Taheri A K. Microstructural evolution in 7075 aluminum alloy during retrogression process: experimental and phase-field modeling [J]. J. Mater. Eng. Perform., 2024, 33: 4898
[30] Liu C, Li Q L, Zhang T Y, et al. Focusing on the relationship between the precipitated phases and the pitting corrosion of ZL101A aluminum alloy [J]. Surf. Topogr. Metrol. Prop., 2021, 9: 045047
[31] Zhang Y L, Yang H F, Sun P, et al. Effect of aging time on precipitation of MgZn2 and microstructure and properties of 7075 aluminum alloy [J]. J. Mater. Eng. Perform., 2024, 33: 6601
[1] 周谦永, 赖漾, 李谦. 酸洗工艺对不同锡量二次冷轧镀锡板耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 939-946.
[2] 丁智超, 张树国, 肖晓春, 汪迪, 李文杰, 姜丽红. 半固态7075铝合金搅拌摩擦焊接头晶间腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 1089-1097.
[3] 张雄斌, 党恩, 于晓婧, 汤玉斐, 赵康. 油气田用马氏体不锈钢腐蚀性能研究现状与进展[J]. 中国腐蚀与防护学报, 2025, 45(4): 837-848.
[4] 郑文涛, 陆飞雪, 都凯, 王志惠, 贾海龙. 喷丸工艺对7075铝合金板材表面性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(3): 765-772.
[5] 马晋遥, 董楠, 郭振森, 韩培德. B、Ce微合金化对S31254超级奥氏体不锈钢析出相及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1610-1616.
[6] 程永贺, 付俊伟, 赵茂密, 沈云军. 高熵合金耐蚀性研究进展[J]. 中国腐蚀与防护学报, 2024, 44(5): 1100-1116.
[7] 刘浩, 郭晓开, 王维, 伍廉奎, 曹发和, 孙擎擎. 超声喷丸对7075铝合金棒材组织结构与性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1293-1302.
[8] 毛训聪, 陈乐平, 彭聪. Ca-P涂层和Sr-P涂层对脉冲磁场下凝固的Mg-Zn-Zr-Gd合金耐蚀性的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 647-655.
[9] 汪涵敏, 黄峰, 袁玮, 张佳伟, 王昕煜, 刘静. 新型Cu-Mo耐候钢在模拟海洋大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 507-515.
[10] 张小丽, 寻懋年, 梁小红, 张彩丽, 韩培德. 含Ce S31254超级奥氏体不锈钢析出相析出行为及耐蚀性[J]. 中国腐蚀与防护学报, 2023, 43(2): 384-390.
[11] 蒋芳芳, 云虹, 彭莉, 张依豪, 李卫顺, 代文静, 王保峰, 徐群杰. 原位聚合聚苯胺改性NiFe-LDH复合涂层的防护性能研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 312-320.
[12] 郎丰军, 黄峰, 徐进桥, 李利巍, 岳江波, 刘静. Mg处理X70级抗酸性海底管线钢 (X70MOS) 成分设计及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 617-624.
[13] 张浩然, 吴鸿燕, 王善林, 左瑶, 陈玉华, 尹立孟. 含硫化物夹杂的铁基非晶合金点蚀规律[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[14] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[15] 黄勇, 王善林, 王帅星, 龚玉兵, 柯黎明. 含硫化物夹杂铁基块体非晶合金在HCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 203-209.