|
|
循环强化对7075铝合金腐蚀行为的影响 |
陈宇强1, 冉光林1, 陆丁丁1( ), 黄磊2, 曾立英2, 刘阳1, 支倩1 |
1 湖南科技大学材料科学与工程学院 湘潭 411201 2 湘潭市工矿电传动车辆质量检验中心 湘潭 411200 |
|
Effect of Cyclic Strengthening on Corrosion Behavior of 7075 Al-alloy |
CHEN Yuqiang1, RAN Guanglin1, LU Dingding1( ), HUANG Lei2, ZENG Liying2, LIU Yang1, ZHI Qian1 |
1 School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China 2 Xiangtan Industrial and Mining Electric Transmission Vehicle Quality Inspection Center, Xiangtan 411200, China |
引用本文:
陈宇强, 冉光林, 陆丁丁, 黄磊, 曾立英, 刘阳, 支倩. 循环强化对7075铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1051-1060.
Yuqiang CHEN,
Guanglin RAN,
Dingding LU,
Lei HUANG,
Liying ZENG,
Yang LIU,
Qian ZHI.
Effect of Cyclic Strengthening on Corrosion Behavior of 7075 Al-alloy[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 1051-1060.
[1] |
Li B B, Wang Y Q, Zhi X H, et al. A review on the research of the 7xxx series high strength aluminum alloys as structural material in China [J]. Prog. Steel Build. Struct., 2021, 23(7): 1
|
[1] |
(李贝贝, 王元清, 支新航 等. 我国7xxx系高强铝合金及其研究进展 [J]. 建筑钢结构进展, 2021, 23(7): 1)
|
[2] |
LI H, Yan W J, Zhang Y, et al. Research progress of hot crack in fusion welding of advanced aeronautical materials [J]. J. Mater. Eng., 2022, 50(2): 50
doi: 10.11868/j.issn.1001-4381.2021.000676
|
[2] |
(李 红, 闫维嘉, 张 禹 等. 先进航空材料焊接过程热裂纹研究进展 [J]. 材料工程, 2022, 50(2): 50)
|
[3] |
Gao Z G, He Y T, Zhang S, et al. Research on corrosion damage evolution of aluminum alloy for aviation [J]. Appl. Sci., 2020, 10: 7184
|
[4] |
Li S S, Yue X, Li Q Y, et al. Development and applications of aluminum alloys for aerospace industry [J]. J. Mater. Res. Technol., 2023, 27: 944
|
[5] |
Yang K, Jin P, Fan C Z. Study on corrosion damage distribution and failure law of naval aircraft structure [J]. Aeronaut. Comput. Techniq., 2010, 40(3): 65
|
[5] |
(杨 凯, 金 平, 范存智. 飞机结构腐蚀损伤分布及失效规律研究 [J]. 航空计算技术, 2010, 40(3): 65)
|
[6] |
Altas E, Bati S, Rajendrachari S, et al. Comprehensive analysis of mechanical properties, wear, and corrosion behavior of AA7075-T6 alloy subjected to cryogenic treatment for aviation and defense applications [J]. Surf. Coat. Technol., 2024, 490: 131101
|
[7] |
Gürgen S, Sackesen İ, Kuşhan M C. Fatigue and corrosion behavior of in-service AA7075 aircraft component after thermo-mechanical and retrogression and re-aging treatments [J]. Proc. Inst. Mech. Eng., 2019, 233L: 1764
|
[8] |
Li C X, Xu J, Li J F, et al. Comparison of mechanical properties and corrosion behaviors of 7075 aluminum alloy at various aging systems [J]. Alum. Fabricat., 2009, (5): 10
|
[8] |
(李朝兴, 徐 静, 李劲风 等. 不同时效制度7075铝合金力学性能及腐蚀性能综合比较研究 [J]. 铝加工, 2009, (5): 10)
|
[9] |
Mancha-Molinar H, López H, Silva A, et al. Role of T7 heat treating on the dimensional stability of automotive A319 Al alloys [R]. Detroit Michigan: SAE, 2004
|
[10] |
Kuang X Q, Li R L, Ji Q Q, et al. Effects of different heat treatments on mechanical properties and corrosion resistance of Al-7.95Zn-1.84Mg-0.65Cu aluminum alloy [J]. J. Northwest. Polytech. Univ., 2020, 38: 596
|
[10] |
(匡秀琴, 李瑞雷, 季清清 等. 不同热处理对Al-7.95Zn-1.84Mg-0.65Cu合金力学性能和耐腐蚀性能的影响 [J]. 西北工业大学学报, 2020, 38: 596)
|
[11] |
Zhang Y, Zhang L T, Gao X, et al. Tailoring precipitate distribution in 2024 aluminum alloy for improving strength and corrosion resistance [J]. J. Mater. Sci. Technol., 2024, 194: 16
doi: 10.1016/j.jmst.2023.12.055
|
[12] |
Sun W W, Zhu Y M, Marceau R, et al. Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity [J]. Science, 2019, 363(6430): 972
doi: 10.1126/science.aav7086
pmid: 30819960
|
[13] |
Zhang Y, Zhu Y M, Marceau R K W, et al. Enhancing the strength and sensitization resistance of 5xxx alloys via nanoscale clustering induced by room-temperature cyclic plasticity [J]. Corros. Sci., 2024, 227: 111729
|
[14] |
Cao F H, Zhang Z, Li J F, et al. Exfoliation corrosion of aluminum alloy AA7075 examined by electrochemical impedance spectroscopy [J]. Mater. Corros., 2004, 55: 18
|
[15] |
Wang B, Zhang L W, Su Y, et al. Investigation on the corrosion behavior of aluminum alloys 3A21 and 7A09 in chloride aqueous solution [J]. Mater. Des., 2013, 50: 15
|
[16] |
Yang X K, Zhang L W, Zhang S Y, et al. Properties degradation and atmospheric corrosion mechanism of 6061 aluminum alloy in industrial and marine atmosphere environments [J]. Mater. Corros., 2017, 68: 529
|
[17] |
Li Z, Zhang Z, Chen X G. Microstructure, elevated-temperature mechanical properties and creep resistance of dispersoid-strengthened Al-Mn-Mg 3xxx alloys with varying Mg and Si contents [J]. Mater. Sci. Eng., 2017, 708A: 383
|
[18] |
Dong C F, Xiao K, Xu L, et al. Characterization of 7A04 aluminum alloy corrosion under atmosphere with chloride ions using electrochemical techniques [J]. Rare Met. Mater. Eng., 2011, 40: 275
|
[19] |
Zhan D D, Wang C, Qian J Y, et al. Effect of trace Cl- and Cu2+ ions on corrosion behavior of 3A21 al-alloy in ethylene glycol coolant [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 383
|
[19] |
(战栋栋, 王 成, 钱吉裕 等. 痕量Cl-和Cu2+对3A21铝合金在乙二醇冷却液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 383)
doi: 10.11902/1005.4537.2020.082
|
[20] |
Zhang F, Nilsson J O, Pan J S. In situ and operando AFM and EIS studies of anodization of Al 6060: influence of intermetallic particles [J]. J. Electrochem. Soc., 2016, 163: C609
|
[21] |
Zhang Y L, Yang H F, Sun P, et al. Effect of aging time on precipitation of MgZn2 and microstructure and properties of 7075 aluminum alloy [J]. J. Mater. Eng. Perform., 2024, 33: 6601
|
[22] |
Taşgın Y, Ergin R. Investigation of the effects of deformation aging applied to AA7075 aluminum alloy on mechanical and metallographic properties [J]. J. Mater. Eng. Perform., 2022, 31: 4583
|
[23] |
Liu D Q, Ke L M, Xu W P, et al. Intergranular corrosion behavior of friction-stir welding joint for 20 mm thick plate of 7075 Al-alloy [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 293
|
[23] |
(刘德强, 柯黎明, 徐卫平 等. 7075厚板铝合金搅拌摩擦焊接头晶间腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2017, 37: 293)
doi: 10.11902/1005.4537.2016.030
|
[24] |
Xu B, Ou H, Liu Q X X, et al. Property of electromagnetic welded joints of 5052 aluminum alloy and HC420LA high strength steel in salt fog corrosion [J]. China Mech. Eng., 2019, 30: 1506
|
[24] |
(许 冰, 欧 航, 柳泉潇潇 等. 5052铝合金-HC420LA高强钢磁脉冲焊接接头盐雾腐蚀性能 [J]. 中国机械工程, 2019, 30: 1506)
|
[25] |
El Garchani F, Kabiri M R. Evaluation of AA 7075-T6 alloy's corrosion behavior using salt spray test [A]. The 17th International Conference Interdisciplinarity in Engineering [C]. Cham, 2023: 1
|
[26] |
Li B, Fan L, Sun B, et al. Corrosion mechanism of aluminum alloy materials under high corrosion conditions [J]. J. Chongqing Univ., 2023, 46(5): 31
|
[26] |
(李 波, 樊 磊, 孙 博 等. 高腐蚀条件下用铝合金材料腐蚀机理 [J]. 重庆大学学报, 2023, 46(5): 31)
|
[27] |
Liu X, Liu H C, Li W P, et al. Corrosion fatigue behavior of 7075 aluminum alloy in saline water environment at different temperatures [J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 2850
|
[27] |
(刘 轩, 刘慧丛, 李卫平 等. 7075铝合金在不同温度盐水环境中的腐蚀疲劳行为 [J]. 航空学报, 2014, 35: 2850)
|
[28] |
Liu Y R, Pan Q L, Li H, et al. Revealing the evolution of microstructure, mechanical property and corrosion behavior of 7A46 aluminum alloy with different ageing treatment [J]. J. Alloy. Compd., 2019, 792: 32
|
[29] |
Ebrahimi H, Taheri A K. Microstructural evolution in 7075 aluminum alloy during retrogression process: experimental and phase-field modeling [J]. J. Mater. Eng. Perform., 2024, 33: 4898
|
[30] |
Liu C, Li Q L, Zhang T Y, et al. Focusing on the relationship between the precipitated phases and the pitting corrosion of ZL101A aluminum alloy [J]. Surf. Topogr. Metrol. Prop., 2021, 9: 045047
|
[31] |
Zhang Y L, Yang H F, Sun P, et al. Effect of aging time on precipitation of MgZn2 and microstructure and properties of 7075 aluminum alloy [J]. J. Mater. Eng. Perform., 2024, 33: 6601
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|