Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (6): 1589-1598     CSTR: 32134.14.1005.4537.2025.011      DOI: 10.11902/1005.4537.2025.011
  研究报告 本期目录 | 过刊浏览 |
腐蚀形貌对镁合金电化学阻抗谱特征的影响研究
许诗源1, 孟鑫2, 杨亚璋1, 刘辰1, 张昭3, 方晓祖1()
1 中国兵器科学研究院宁波分院 宁波 315000
2 重庆铁马工业集团有限公司 重庆 400000
3 浙江大学化学系 杭州 310000
Effect of Corrosion Morphology on Electrochemical Impedance Spectroscopy Characteristics of Mg-alloy
XU Shiyuan1, MENG Xin2, YANG Yazhang1, LIU Chen1, ZHANG Zhao3, FANG Xiaozu1()
1 Ningbo branch of Chinese Academy of Ordnance Science, Ningbo 315000, China
2 Chongqing Tiema Industrial Group Co. Ltd. , Chongqing 400000, China
3 Department of Chemistry, Zhejiang University, Hangzhou 310000, China
引用本文:

许诗源, 孟鑫, 杨亚璋, 刘辰, 张昭, 方晓祖. 腐蚀形貌对镁合金电化学阻抗谱特征的影响研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1589-1598.
Shiyuan XU, Xin MENG, Yazhang YANG, Chen LIU, Zhao ZHANG, Xiaozu FANG. Effect of Corrosion Morphology on Electrochemical Impedance Spectroscopy Characteristics of Mg-alloy[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1589-1598.

全文: PDF(18614 KB)   HTML
摘要: 

为研究镁合金电化学阻抗谱中双感抗弧现象的形成机理,本研究选择均匀腐蚀为主的纯镁和局部腐蚀为主的AZ31镁合金样品作为对比样本。在质量分数为3.5%NaCl溶液中浸泡24 h后,电化学阻抗谱测试显示:纯镁样品未出现双感抗弧现象;而AZ31镁合金样品表现出明显的双感抗弧现象。进一步对样品的腐蚀形貌的分析表明:纯镁样品表面形成了较为均匀的腐蚀形貌;而AZ31镁合金同时遭受丝状腐蚀和点蚀,丝状腐蚀和点蚀不同的扩展方式导致样品表面形成了不均匀的腐蚀形貌。电化学阻抗谱与腐蚀形貌特征的分析结果表明镁合金样品中双感抗弧现象的形成与其不均匀的腐蚀形貌有关。

关键词 镁合金腐蚀电化学阻抗谱腐蚀形貌    
Abstract

In order to investigate the formation mechanism of dual inductive loops in electrochemical impedance spectroscopy (EIS) of Mg-alloy, the corrosion behavior in 3.5% (mass fraction) NaCl solution of pure Mg (exhibiting uniform corrosion) and AZ31 Mg-alloy (predominantly undergoing localized corrosion) was comparatively assessed. After immersion in 3.5% (mass fraction) NaCl solution for 24 h, the EIS test results revealed that the pure Mg did not exhibit dual inductive loops. However, the dual inductive loops can be observed for AZ31 Mg-alloy. Morphological analysis further demonstrated that the pure Mg did experience uniform corrosion. However, AZ31 Mg-alloy suffered from both filiform corrosion and pitting corrosion. The different propagation mechanism of filiform corrosion and pitting corrosion led to the formation of non-uniform corrosion morphology. The test results of EIS and corrosion morphology established that the formation of double induction loops for AZ31 Mg-alloy is related to the non-uniform corrosion morphology.

Key wordsMg-alloys    corrosion    EIS    corrosion morphology
收稿日期: 2025-01-06      32134.14.1005.4537.2025.011
ZTFLH:  T146.2  
基金资助:宁波市青年科技创新领军人才项目(2024QL010);中国创新挑战(宁波)重大专项(2023T001)
通讯作者: 方晓祖,E-mail:nbbkycorrosion2024@163.com,研究方向为海洋及两栖装备的腐蚀与防护技术
Corresponding author: FANG Xiaozu, E-mail: nbbkycorrosion2024@163.com
作者简介: 许诗源,男,1989年生,博士
SamplesAlZnMnFeNiCuMg
Pure Mg0.00250.000710.000410.00820.000130.00012Bal.
AZ31 Mg-alloy3.280.950.840.0140.00230.00021Bal.
表1  实验用镁合金化学成分 (mass fraction / %)
图1  纯镁和AZ31镁合金样品的背散射照片
AreasMgAlMnZn
A97.12.3-0.6
B25.147.727.2-
C12.756.530.50.3
表2  AZ31镁合金样品不同区域的EDS分析结果 (atomic fraction / %)
图2  纯镁和AZ31镁合金样品3.5%NaCl溶液中浸泡24 h后的电化学阻抗谱测试结果
图3  纯镁和AZ31镁合金样品在3.5%NaCl溶液中浸泡24 h后的光学形貌
图4  纯镁样品腐蚀形貌的SEM形貌
图5  AZ31镁合金样品去除腐蚀产物后的腐蚀形貌
图6  AZ31镁合金样品在3.5%NaCl溶液中浸泡24 h后截面形貌
RegionMgO
D82.317.7
E72.028.0
F69.730.3
表3  纯镁和AZ31镁合金样品腐蚀产物的EDS测试结果 (atomic fraction / %)
图7  纯镁和AZ31镁合金腐蚀产物XRD谱
图8  纯镁样品和AZ31镁合金样品等效电路
图9  AZ31镁合金样品浸泡10 min后的腐蚀形貌SEM图
图10  AZ31镁合金样品浸泡30 min后的腐蚀形貌SEM图
图11  AZ31镁合金腐蚀过程示意图
[1] Mordike B L, Ebert T. Magnesium: Properties-applications-potential [J]. Mater. Sci. Eng., 2001, 302A: 37
[2] Abbott T B. Magnesium: Industrial and research developments over the last 15 years [J]. Corrosion, 2015, 71: 120
[3] Nie Y J, Dai J W, Li X, et al. Recent developments on corrosion behaviors of Mg alloys with stacking fault or long period stacking ordered structures [J]. J. Magnesium Alloys, 2021, 9: 1123
[4] Atrens A, Song G L, Cao F Y, et al. Advances in Mg corrosion and research suggestions [J]. J. Magnesium Alloys, 2013, 1: 177
[5] Atrens A, Song G L, Liu M, et al. Review of recent developments in the field of magnesium corrosion [J]. Adv. Eng. Mater., 2015, 17: 400
[6] Gabrielli C. Once upon a time there was EIS [J]. Electrochim. Acta, 2020, 331: 135324
[7] Pardo A, Feliu S, Merino M C, et al. Electrochemical estimation of the corrosion rate of magnesium/aluminium alloys [J]. Int. J. Corros., 2010, 2010: 953850
[8] Bland L G, King A D, Birbilis N, et al. Assessing the corrosion of commercially pure magnesium and commercial AZ31B by electrochemical impedance, mass-loss, hydrogen collection, and inductively coupled plasma optical emission spectrometry solution analysis [J]. Corrosion, 2015, 71: 128
[9] Song G L, Atrens A, Wu X L, et al. Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride [J]. Corros. Sci., 1998, 40: 1769
[10] Song G L, Bowles A L, StJohn D H. Corrosion resistance of aged die cast magnesium alloy AZ91D [J]. Mater. Sci. Eng., 2004, 366A: 74
[11] Song G L. Effect of tin modification on corrosion of AM70 magnesium alloy [J]. Corros. Sci., 2009, 51: 2063
[12] Liu M, Schmutz P, Uggowitzer P J, et al. The influence of yttrium (Y) on the corrosion of Mg-Y binary alloys [J]. Corros. Sci., 2010, 52: 3687
[13] Acharya M G, Shetty A N. The corrosion behavior of AZ31 alloy in chloride and sulfate media-a comparative study through electrochemical investigations [J]. J. Magnes. Alloy., 2019, 7: 98
[14] Yamasaki M, Shi Z, Atrens A, et al. Influence of crystallographic orientation and Al alloying on the corrosion behaviour of extruded α-Mg/LPSO two-phase Mg-Zn-Y alloys with multimodal microstructure [J]. Corros. Sci., 2022, 200: 110237
[15] Cao F Y, Zheng D J, Song G L, et al. The corrosion behavior of Mg5Y in nominally distilled water [J]. Adv. Eng. Mater., 2018, 20: 1700986
[16] Medhashree H, Shetty A N. Electrochemical corrosion study of Mg-Al-Zn-Mn alloy in aqueous ethylene glycol containing chloride ions [J]. J. Mater. Res. Technol., 2017, 6: 40
[17] Bland L G, Scully L C, Scully J R. Assessing the corrosion of multi-phase Mg-Al alloys with high Al content by electrochemical impedance, mass loss, hydrogen collection, and inductively coupled plasma optical emission spectrometry solution analysis [J]. Corrosion, 2017, 73: 526
[18] Liu J H, Song Y W, Shan D Y, et al. Different microgalvanic corrosion behavior of cast and extruded EW75 Mg alloys [J]. J. Electrochem. Soc., 2016, 163: C856
[19] Benbouzid A Z, Gomes M P, Costa I, et al. A new look on the corrosion mechanism of magnesium: An EIS investigation at different pH [J]. Corros. Sci., 2022, 205: 110463
[20] Li J R, Jiang Q T, Sun H Y, et al. Effect of heat treatment on corrosion behavior of AZ63 magnesium alloy in 3.5wt.% sodium chloride solution [J]. Corros. Sci., 2016, 111: 288
[21] Li J R, Zhang B B, Wei Q Y, et al. Electrochemical behavior of Mg-Al-Zn-In alloy as anode materials in 3.5wt.%NaCl solution [J]. Electrochim. Acta, 2017, 238: 156
[22] Zhang T, Meng G Z, Shao Y W, et al. Corrosion of hot extrusion AZ91 magnesium alloy. Part II: Effect of rare earth element neodymium (Nd) on the corrosion behavior of extruded alloy [J]. Corros. Sci., 2011, 53: 2934
[23] Cao F Y, Shi Z M, Song G L, et al. Influence of casting porosity on the corrosion behaviour of Mg0.1Si [J]. Corros. Sci., 2015, 94: 255
[24] Shi Z M, Cao F Y, Song G L, et al. Corrosion behaviour in salt spray and in 3.5%NaCl solution saturated with Mg(OH)2 of as-cast and solution heat-treated binary Mg-RE alloys: RE = Ce, La, Nd, Y, Gd [J]. Corros. Sci., 2013, 76: 98
[25] Xu H, Zhang X, Zhang K, et al. Effect of extrusion on corrosion behavior and corrosion mechanism of Mg-Y alloy [J]. J. Rare Earths, 2016, 34: 315
[26] Li B J, Sun J P, Xu B Q, et al. Corrosion behavior of Mg-5.7Gd-1.9Ag Mg alloy sheet [J]. J. Alloy. Compd., 2022, 915: 165241
[27] Chen Z, Li H Z, Liang X P, et al. In-situ observation on filiform corrosion propagation and its dependence on Zr distribution in Mg alloy WE43 [J]. J. Magnes. Alloy., 2023, 11: 4282
[28] Xu S Y, Jiang S N, Chen Z Y, et al. Influence of corrosion morphology on inductive impedance of Mg-Gd-Y-Zn-Zr-Ag alloy [J]. J. Mater. Eng. Perform., 2021, 30: 4126
[29] Xu S Y, Liu C M, Gao Y H, et al. Influence of long-period stacked ordered phases on inductive impedance of Mg-Gd-Y-Zn-Zr-Ag alloys [J]. Materials (Basel), 2023, 16: 640
[30] Zeng R C, Hu Y, Guan S K, et al. Corrosion of magnesium alloy AZ31: The influence of bicarbonate, sulphate, hydrogen phosphate and dihydrogen phosphate ions in saline solution [J]. Corros. Sci., 2014, 86: 171
[31] Aung N N, Zhou W. Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy [J]. Corros. Sci., 2010, 52: 589
[32] Ben Hamu G, Eliezer D, Wagner L. The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy [J]. J. Alloy. Compd., 2009, 468: 222
[33] Baril G, Galicia G, Deslouis C, et al. An impedance investigation of the mechanism of pure magnesium corrosion in sodium sulfate solutions [J]. J. Electrochem. Soc., 2007, 154: C108
[34] Mingo B, Arrabal R, Mohedano M, et al. Enhanced corrosion resistance of AZ91 alloy produced by semisolid metal processing [J]. J. Electrochem. Soc., 2015, 162: C180
[1] 李伟华, 李中, 张丹妮, 徐大可. 微生物诱导矿化抑制金属腐蚀:机制、设计策略及展望[J]. 中国腐蚀与防护学报, 2025, 45(6): 1459-1473.
[2] 刘建阳, 韩扬, 于美燕, 王巍. 光响应多功能自修复涂层的研究进展[J]. 中国腐蚀与防护学报, 2025, 45(6): 1493-1507.
[3] 刘明, 冯富海, 汤玉斐. 环保复合型融雪剂的研究进展[J]. 中国腐蚀与防护学报, 2025, 45(6): 1508-1516.
[4] 叶俊, 罗鑫, 镇咸生, 李新平, 谢云, 彭晓. Inconel 718合金在750 ℃下不同气氛中的氧化与热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1528-1536.
[5] 李兆南, 侯禹岑, 莒鹏, 庄铁钢, 陈景杰, 王明昱, 徐云泽. 模拟液滴电导率变化对碳钢大气腐蚀的影响机制研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1537-1548.
[6] 王得, 张璠, 王兴奇, 张贺新, 赵成志, 杨延格. 单组分氟碳改性环氧涂层对碳钢和铝合金长期防腐性能的对比研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1549-1562.
[7] 周洪涛, 王琳琳, 王旻, 王平, 马颖澈. Al含量对AFA钢耐铅铋腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1563-1574.
[8] 王立芳, 商孟超, 高希钰, 刘贵昌, 孙文. B30铜镍合金原始膜对其腐蚀的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1575-1588.
[9] 彭望, 陈荐, 杨凌旭, 刘会军, 梁建平, 曾潮流. NaCl347HGH3539在熔融硝酸盐中热腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1610-1618.
[10] 李雨情, 张铁志, 黄兴林, 孙振美, 张怡, 尹衍升. 耐压海乳杆菌对2205双相不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1619-1626.
[11] 邓艳, 彭子飘, 刘毅超, 钟显康. 一种新型含铜钛合金的制备与抗菌性能研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1649-1658.
[12] 孙士斌, 高浩, 常雪婷, 王东胜. 细晶FH40船用低温钢在海水-海冰中耦合失效行为研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1659-1668.
[13] 李瓒龙, 颜晴, 满成. 加压载荷和摩擦频率对7075铝合金磨损腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1669-1678.
[14] 赵彪, 张永强, 田会云, 逄昆, 崔中雨. CO2 地层水环境温度变化对J55钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1689-1697.
[15] 张德平, 闫立震, 于洋, 杨广明, 代春宇, 孟乐, 徐博, 刘智勇. CO2 驱采油井复杂环境中N80油管断裂失效机理[J]. 中国腐蚀与防护学报, 2025, 45(6): 1698-1708.