Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (6): 1773-1778     CSTR: 32134.14.1005.4537.2025.073      DOI: 10.11902/1005.4537.2025.073
  研究报告 本期目录 | 过刊浏览 |
低温扩散预处理对含B超级奥氏体不锈钢S31254析出相及耐蚀性的影响
何燕1,2(), 刘燕1,2, 田华1,2, 陈晔1,2
1 中国机械总院集团山西机电研究院有限公司 太原 030009
2 山西省机械产品质量监督检验站有限公司 太原 030009
Effect of Low Temperature Diffusion Pretreatment on Precipitation of Phases During Post-aging Treatment for B-containing S31254 Super Austenitic Stainless Steel and its Corrosion Resistance
HE Yan1,2(), LIU Yan1,2, TIAN Hua1,2, CHEN Ye1,2
1 China Academy of Machinery Shanxi Electromechanical Research Institute Co. Ltd. , Taiyuan 030009, China
2 Shanxi Machinery Products Quality Supervision and Inspection Station Co. Ltd. , Taiyuan 030009, China
引用本文:

何燕, 刘燕, 田华, 陈晔. 低温扩散预处理对含B超级奥氏体不锈钢S31254析出相及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1773-1778.
Yan HE, Yan LIU, Hua TIAN, Ye CHEN. Effect of Low Temperature Diffusion Pretreatment on Precipitation of Phases During Post-aging Treatment for B-containing S31254 Super Austenitic Stainless Steel and its Corrosion Resistance[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1773-1778.

全文: PDF(11908 KB)   HTML
摘要: 

研究了低温扩散预处理对含B超级奥氏体不锈钢S31254钢高温时效过程中晶界析出相及耐蚀性的影响。结果表明,含B超级奥氏体不锈钢经过低温300 ℃不同时间扩散处理,可改变B在晶界的分布,低温扩散时间越长,对后续高温时效处理中析出相的析出影响越明显,其中300 ℃保温60 min的试样抑制高温时效析出相析出明显。B参与了晶界析出相的析出,含B富Mo析出相相界面具有更好的耐蚀性能。经过300 ℃不同时间扩散处理后,S31254钢高温时效组织中析出相明显减少。

关键词 超级奥氏体不锈钢析出相时效处理耐蚀性扩散处理    
Abstract

In this paper, hot rolled plate of a B-containing super austenitic stainless steel S31254 was subjected to solid solution treatment at 1180 oC for 20 min, and then diffusion pre-treatment at 300 oC for different times, and finally aging 900 oC for 2 h. Meanwhile the influence on the precipitation of second phases during aging process and the corrosion performance in 10% NaCl solution of the aged steel was assessed. The results show that when the steel is subjected to pre-diffusion treatment at 300 oC for different times, it will affect the redistribution of B at grain boundaries after subsequent high-temperature aging treatment. The longer the low temperature diffusion time, the more significant the impact on the formation and distribution of the precipitation phase. Among others, the steel being pre-diffusion treated at 300 oC for 60 min may present the most significant inhibition effect on the precipitation of second phases. B is involved in the precipitation of the precipitated phase at grain boundaries, the B-containing Mo-rich precipitate phase interface has better corrosion resistance. After diffusion treatment at 300 oC for different times, the precipitates of were significantly reduced in the aging microstructure of S31254 steel.

Key wordssuper austenitic stainless steel    precipitate phase    aging treatment    corrosion resistance    diffusion pretreatment
收稿日期: 2025-02-28      32134.14.1005.4537.2025.073
ZTFLH:  TG174  
通讯作者: 何燕,E-mail:heyan2012@163.com,研究方向为金属材料
作者简介: 何 燕,女,1988年生,工程师
图1  热处理工艺流程
图2  S31254钢在300 ℃保温不同时间后在900 ℃时效处理2 h的显微组织
图3  S31254钢在300 ℃保温不同时间后在900 ℃时效处理2 h后的EDS能谱分析
图4  B在奥氏体钢中的溶解度曲线
图5  S31254钢经300 ℃保温处理不同时间后再经900 ℃时效处理2 h,在10%NaCl水溶液中的动电位极化曲线
图6  经300 ℃保温处理不同时间、再经900 ℃时效处理2 h后S31254钢的动电位再活化曲线
SampleIr / A·cm-2Ra (Ir/Ia) / %
300-60 min0.0015320.0880
300-40 min0.0018760.1180
300-20 min0.0061800.3394
300-0 min0.0037890.2198
表1  图6中S31254钢动电位再活化曲线Ir与Ra拟合值
图7  经300 ℃保温处理不同时间后再经900 ℃时效处理2 h的S31254钢电化学极化腐蚀表面形貌
[1] Ge F, Wang L W, Dou Y P, et al. Elucidating the passivation kinetics and surface film chemistry of 254SMO stainless steel for chimney construction in simulated desulfurized flue gas condensates [J]. Constr. Build. Mater., 2021, 285: 122905
[2] Marin R, Combeau H, Zollinger J, et al. σ-phase formation in super austenitic stainless steel during directional solidification and subsequent phase transformations [J]. Metall. Mater. Trans., 2020, 51A: 3526
[3] Zhang S C, Li H B, Jiang Z H, et al. Effects of Cr and Mo on precipitation behavior and associated intergranular corrosion susceptibility of superaustenitic stainless steel S32654 [J]. Mater. Charact., 2019, 152: 141
[4] Li C, Wang Q T, Yang C G, et al. Corrosion behavior of 904L super-austenitic stainless steel in simulated primary water in nuclear power plants [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 716
[4] (李 禅, 王庆田, 杨承刚 等. 904L超级奥氏体不锈钢在模拟核电一回路环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 716)
[5] He Z H, Jia J W, Li Y, et al. Passivation behavior of super austenitic stainless steels in simulated flue gas desulfurization condensate [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 408
[5] (贺志豪, 贾建文, 李 阳 等. 超级奥氏体不锈钢在模拟烟气脱硫冷凝液中的钝化行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 408)
[6] Han R Z, Jia J W, Li Y, et al. Corrosion behavior of three super austenitic stainless steels in a molten salts mixture at 650-750 oC [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 421
[6] (韩瑞珠, 贾建文, 李 阳 等. 超级奥氏体不锈钢的热腐蚀行为及机理研究 [J]. 中国腐蚀与防护学报, 2023, 43: 421)
[7] Liu W Q, Wang L J, Zhang F C, et al. Review on development and second phase regulation of super austenitic stainless steels [J]. J. Iron Steel Res., 2023, 35: 907
[7] (刘文强, 王丽君, 张福成 等. 超级奥氏体不锈钢发展及第二相调控研究现状 [J]. 钢铁研究学报, 2023, 35: 907)
[8] San X Y, Zhang B, Wu B, et al. Investigating the effect of Cu-rich phase on the corrosion behavior of super 304H austenitic stainless steel by TEM [J]. Corros. Sci., 2018, 130: 143
[9] Zhang S C, Li H B, Jiang Z H, et al. Influence of N on precipitation behavior, associated corrosion and mechanical properties of super austenitic stainless steel S32654 [J]. J. Mater. Sci. Technol., 2020, 42: 143
[10] Wang J, Cui Y S, Bai J G, et al. Effect of B addition on the microstructure and corrosion resistance of S31254 super austenitic stainless steels after solid solution treatment [J]. Mater. Lett., 2019, 252: 60
[11] Qurashi M S, Cui Y S, Wang J, et al. Corrosion resistance and passivation behavior of B-containing S31254 stainless steel in a low pH medium [J]. Int. J. Electrochem. Sci., 2019, 14: 10642
[12] Liang C X, Liang X H, Han P D. Effect of a new heat treatment process on B elements distribution, second phase precipitation and corrosion resistance of S31254 super austenitic stainless steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 639
[12] (梁超雄, 梁小红, 韩培德. 新热处理工艺调控B元素分布对S31254超级奥氏体不锈钢第二相析出和耐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 639)
[13] Wang J, Cui Y S, Bai J G, et al. The mechanism on the B addition to regulate phase precipitation and improve intergranular corrosion resistance in UNS S31254 superaustenitic stainless steels [J]. J. Electrochem. Soc., 2019, 166: C600
[14] Bai J G, Cui Y S, Wang J, et al. Effect of compression deformation on precipitation phase behavior of B-containing S31254 super austenitic stainless steel [J]. J. Iron Steel Res. Int., 2019, 26: 712
[15] Li S, Ma J Y, Wang J, et al. Impact of boron addition on the hot deformation behavior and microstructure evolution of S31254 [J]. Mater. Lett., 2022, 315: 131971
[16] Bai J G, Cui Y S, Wang J, et al. Effect of boron addition on the precipitation behavior of S31254 [J]. Metals, 2018, 8: 497
[17] Yu J T, Zhang S C, Li H B, et al. Influence mechanism of boron segregation on the microstructure evolution and hot ductility of super austenitic stainless steel S32654 [J]. J. Mater. Sci. Technol., 2022, 112: 184
[18] Wang Q, Wang L J, Sun Y H, et al. The influence of Ce micro-alloying on the precipitation of intermetallic sigma phase during solidification of super-austenitic stainless steels [J]. J. Alloy. Compd., 2020, 815: 152418
[19] Ma J Y, Dong N, Guo Z S, et al. Effect of B and Ce micro-alloying on secondary phase precipitation and corrosion resistance of S31254 super austenitic stainless steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1610
[19] (马晋遥, 董 楠, 郭振森 等. B、Ce微合金化对S31254超级奥氏体不锈钢析出相及耐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2024, 44: 1610)
[20] Zhang X L, Xun M N, Liang X H, et al. Precipitation of second phase and its effect on corrosion resistance of Ce-containing S31254 super austenitic stainless steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 384
[20] (张小丽, 寻懋年, 梁小红 等. 含Ce S31254超级奥氏体不锈钢析出相析出行为及耐蚀性 [J]. 中国腐蚀与防护学报, 2023, 43: 384)
[21] Zhang S C, Jiang Z H, Li H B, et al. Detection of susceptibility to intergranular corrosion of aged super austenitic stainless steel S32654 by a modified electrochemical potentiokinetic reactivation method [J]. J. Alloy. Compd., 2017, 695: 3083
[22] Xu P P, Ma J Y, Jiang Z H, et al. Effects of B segregation on Mo-rich phase precipitation in S31254 super-austenitic stainless steels: experimental and first-principles study [J]. Chin. Phys., 2022, 31B(11): 116402
[23] Zhang Y, Ma J Y, Li H B, et al. Improved corrosion resistance of super austenite stainless steel by B-induced nucleation of laves phase [J]. Corros. Sci., 2023, 213: 110974
[1] 王立芳, 商孟超, 高希钰, 刘贵昌, 孙文. B30铜镍合金原始膜对其腐蚀的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1575-1588.
[2] 黄泽邦, 刘光明, 范文学, 徐睿中, 朱炎彬, 刘晨辉. 钝化时间对304不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1741-1747.
[3] 郭耀威, 艾士民, 房大然, 林小娉, 杨连威, 郑哲皓. 高压凝固Mg-xAl (x = 3, 5, 7, 9, 12)合金组织结构及耐腐蚀性能[J]. 中国腐蚀与防护学报, 2025, 45(5): 1265-1276.
[4] 冯宇芹, 郭同翰, 余韦汉, 吴伟, 张大全. Sb对高强结构钢在东海环境中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1300-1308.
[5] 赵欣宇, 刘恩泽, 张功, 赵媛, 宁礼奎, 信昕, 贾丹, 刘伟华, 谭政. 不同温度下DD10合金钎焊接头热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(5): 1361-1370.
[6] 张雄斌, 党恩, 于晓婧, 汤玉斐, 赵康. 油气田用马氏体不锈钢腐蚀性能研究现状与进展[J]. 中国腐蚀与防护学报, 2025, 45(4): 837-848.
[7] 周谦永, 赖漾, 李谦. 酸洗工艺对不同锡量二次冷轧镀锡板耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 939-946.
[8] 陈宇强, 冉光林, 陆丁丁, 黄磊, 曾立英, 刘阳, 支倩. 循环强化对7075铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1051-1060.
[9] 陆添爱, 蒋文昊, 吴伟, 张俊喜. 基于接地材料功能需求的耐蚀铸铁表面改性研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1443-1453.
[10] 魏珂正, 蒋文龙, 龚奕维, 裘欣, 丁汉林, 项重辰, 王子健. 时效时间对锻态AZ80镁合金第二相析出及柱面取向表面腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1557-1565.
[11] 易铄, 周生璇, 叶鹏, 杜晓洁, 徐震霖, 何宜柱. 选区激光熔化成形含Cu中熵合金的微观组织及耐腐蚀性能[J]. 中国腐蚀与防护学报, 2024, 44(6): 1589-1600.
[12] 马晋遥, 董楠, 郭振森, 韩培德. B、Ce微合金化对S31254超级奥氏体不锈钢析出相及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1610-1616.
[13] 程永贺, 付俊伟, 赵茂密, 沈云军. 高熵合金耐蚀性研究进展[J]. 中国腐蚀与防护学报, 2024, 44(5): 1100-1116.
[14] 洪孝木, 王永强, 李娜, 田凯, 杜娟. 时效处理对马氏体时效硬化不锈钢显微组织和局部腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(5): 1285-1294.
[15] 张吉昊, 徐亚程, 贾学远, 高荣杰. B10铜合金超双疏表面的制备及其性能研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 909-917.