Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (6): 1563-1574     CSTR: 32134.14.1005.4537.2025.058      DOI: 10.11902/1005.4537.2025.058
  研究报告 本期目录 | 过刊浏览 |
Al含量对AFA钢耐铅铋腐蚀性能的影响
周洪涛1,2, 王琳琳1, 王旻2,3(), 王平1, 马颖澈2,3
1 东北大学材料科学与工程学院 沈阳 110819
2 中国科学院金属研究所 核材料与安全评价重点实验室 沈阳 110016
3 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
Influence of Al-content on Corrosion Resistance of Alumina-forming Austinite Steel in Molten Pb-Bi Alloy Eutectic
ZHOU Hongtao1,2, WANG Linlin1, WANG Min2,3(), WANG Ping1, MA Yingche2,3
1 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 Key Laboratory of Nuclear Materials and Safety Evaluation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

周洪涛, 王琳琳, 王旻, 王平, 马颖澈. Al含量对AFA钢耐铅铋腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1563-1574.
Hongtao ZHOU, Linlin WANG, Min WANG, Ping WANG, Yingche MA. Influence of Al-content on Corrosion Resistance of Alumina-forming Austinite Steel in Molten Pb-Bi Alloy Eutectic[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1563-1574.

全文: PDF(39449 KB)   HTML
摘要: 

为提高奥氏体不锈钢耐液态铅铋合金腐蚀性能,本文对不同Al含量的含Al奥氏体(AFA)钢进行预氧化处理,并开展了最长达10000 h 的600 ℃饱和氧液态铅铋腐蚀实验,探究其在高温液态铅铋环境中的腐蚀行为。通过观察腐蚀样品的表面和截面形貌,对不同Al含量合金的氧化层结构和成分进行分析。结果表明,AFA钢的耐铅铋腐蚀性能随Al含量(3.5%~4.5%,质量分数)的增加而增强,且4.5Al (质量分数,%)合金的Al2O3氧化膜的破损比例≤ 20%,表现出优异的耐腐蚀性能。由于Al2O3膜的薄弱区在长期腐蚀过程中产生微观缺陷和表面NbC被氧化为Nb2O5,使四周Al2O3膜产生的微裂纹,为合金元素和氧的扩散提供快速通道,使合金发生局部内氧化现象。

关键词 AFA钢Al2O3抗腐蚀性能Al含量    
Abstract

To enhance the corrosion resistance of austenitic stainless steel in molten Pb-Bi alloy eutectic, herein, hot-rolled plates of alumina-forming austinite (AFA) steels with varying Al contents (3.5%-4.5%, mass fraction) are made and pre-oxidized in air at 800 oC for 20 h. Then their corrosion performance was comparatively assessed in oxygen-saturated Pb-Bi alloy eutectic at 600 oC up to 10,000 h via static immersion test, surface and cross-sectional morphology observations, along with compositional analysis of the formed oxide scales. Results demonstrate that the corrosion resistance to molten Pb-Bi alloy eutectic of AFA steel increases with the increasing Al content, especially, the steel with 4.5%Al exhibits superior corrosion resistance with a damage area ratio less than 20% for its pre-formed Al2O3 scale. In fact, this phenomenon may be ascribed to that during the long-term corrosion process, due to the existence of weak local spots within the pre-formed Al2O3 scale, where micro-defects will be generated, at the same time, the NbC particles on the surface may be oxidized to Nb2O5, which can further induce microcracks in the surrounding Al2O3 film. These provides a rapid pathway for the inter-diffusion of alloying elements and O, leading to localized internal oxidation and causing the pre-formed Al2O3 scale to be damaged. The findings reveal the critical mechanisms governing long-term corrosion performance of the pre-oxidized AFA steels in molten Pb-Bi alloy eutectic cooled nuclear systems.

Key wordsAFA steel    Al2O3    corrosion resistance    Al content
收稿日期: 2025-02-20      32134.14.1005.4537.2025.058
ZTFLH:  TG178  
基金资助:中核集团2023年度青年英才科研项目和中国科学院战略先导专项(XDA041030101)
通讯作者: 王旻,E-mail:minwang@imr.ac.cn,研究方向为核用耐高温液态铅铋腐蚀新材料
Corresponding author: WANG Min, E-mail: minwang@imr.ac.cn
作者简介: 周洪涛,男,1999年生,硕士生
AlloyFeCrNiAlNb + Ti + VMnMoSiC
Q1Bal.15.9724.903.480.621.422.040.110.057
Q2Bal.15.9825.003.960.6271.422.070.110.056
Q3Bal.15.9624.904.480.6291.412.080.110.056
表1  不同Al含量的AFA钢化学成分 (mass fraction / %)
图1  不同Al含量的AFA钢1250 ℃固溶处理后的EBSD晶粒取向分布图
图2  不同Al含量的AFA钢预氧化后表面氧化膜的SEM图像
图3  不同Al含量的AFA钢预氧化后截面氧化膜的EDS图像
图4  不同Al含量的AFA钢在600 ℃静态饱和氧LBE环境下腐蚀1000和10000 h的GIXRD图谱
图5  不同Al含量的AFA钢在600 ℃静态饱和氧LBE环境下腐蚀1000和10000 h后的表面SEM图像
ElementsOCrFeNiAlMnMoNbPbBi
Point 145.240.1743.619.560.230.520.12-0.55-
Point 238.840.2229.071.410.060.27--30.110.03
Point 321.8012.5234.5213.2215.131.110.79-0.91-
表2  图5i中各点合金表面位置氧化产物的EDS成分分析结果 (mass fraction / %)
图6  不同Al含量的AFA钢在600 ℃静态饱和氧LBE环境下腐蚀1000、3000和10000 h后的截面OM图像
图7  不同Al含量的AFA钢在600 ℃静态饱和氧LBE环境中表面疖状氧化物的覆盖比例与腐蚀时间的关系
图8  不同Al含量的AFA钢在600 ℃静态饱和氧LBE环境下腐蚀1000、3000和10000 h后的截面SEM图像
图9  不同Al含量的AFA钢在600 ℃静态饱和氧LBE环境中氧化层厚度与腐蚀时间的关系
图10  不同Al含量的AFA钢在600 ℃静态饱和氧LBE环境中腐蚀1000 h后未破损区的EDS图像
图11  不同Al含量的AFA钢在600 ℃静态饱和氧LBE环境中腐蚀3000 h后氧化区的截面EPMA图像和对应的元素分布
图12  Q2合金在600 ℃静态饱和氧LBE环境中腐蚀10000 h后氧化区的截面EDS图像
图13  合金在600 ℃静态饱和氧LBE环境中的氧化腐蚀机理示意图
[1] Wu Y C, Team FDS. The prospect of lead-based reactors in the fourth generation nuclear power system [J]. Sci. Technol. Rev., 2015, 33(14): 12, 3
[1] (吴宜灿, FDS团队. 第四代核能系统铅基反应堆前景展望 [J]. 科技导报, 2015, 33(14): 12, 3)
[2] Wang G F, Liu H, Wang D D, et al. High-quality energy development and energy security under the new situation for China [J]. Bulletin of Chinese Academy of Sciences, 2023, 38: 23
[2] (王国法, 刘 合, 王丹丹 等. 新形势下我国能源高质量发展与能源安全 [J]. 中国科学院院刊, 2023, 38: 23)
[3] Alemberti A, Smirnov V, Smith C F, et al. Overview of lead-cooled fast reactor activities [J]. Prog. Nucl. Energ., 2014, 77: 300
[4] Jiang H Y, Zhao X Y, Cao S, et al. Effect of Y2O3 addition on the microstructure and liquid LBE cavitation erosion behaviors of Fe-Cr-Al-Ti-C-xY2O3 laser clade coatings [J]. J. Nucl. Mater., 2022, 572: 154030
[5] Schroer C, Wedemeyer O, Novotny J, et al. Selective leaching of nickel and chromium from Type 316 austenitic steel in oxygen-containing lead-bismuth eutectic (LBE) [J]. Corros. Sci., 2014, 84: 113
[6] Wang J M, Arjmand F, Du D H, et al. Electrochemical corrosion behaviors of 316 L stainless steel used in PWR primary pipes [J]. Chin. J. Eng., 2017, 39: 1355
[6] (汪家梅, Arjmand F, 杜东海 等. 压水堆一回路主管道316L不锈钢的电化学腐蚀行为 [J]. 工程科学学报, 2017, 39: 1355)
[7] Zhu Z G, Zhang Q, Tan J B, et al. Corrosion behavior of T91 steel in liquid lead-bismuth eutectic at 550 oC: Effects of exposure time and dissolved oxygen concentration [J]. Corros. Sci., 2022, 204: 110405
[8] Lambrinou K, Koch V, Coen G, et al. Corrosion scales on various steels after exposure to liquid lead-bismuth eutectic [J]. J. Nucl. Mater., 2014, 450: 244
[9] Zhao X, Chen Y X, Zeng X, et al. Heat-treatment optimization and heavy liquid metal compatibility of Si-enriched F/M steel for LFR structure application [J]. Chin. J. Eng., 2020, 42: 1488
[9] (赵 熹, 陈映雪, 曾 献 等. 一种铅基快堆用高硅不锈钢的热处理工艺优化及铅铋相容性研究 [J]. 工程科学学报, 2020, 42: 1488)
[10] Chen L Z, He Y J, Fu X G, et al. Research progress on the corrosion resistance of alumina forming austenitic steel in lead-based liquid metals [J]. Mater. Rep., 2023, 37(): 421
[10] (陈灵芝, 和雅洁, 付晓刚 等. 新型含铝奥氏体合金的耐铅基液态金属腐蚀性能研究进展 [J]. 材料导报, 2023, 37(): 421)
[11] Zhao R L, Jia H D, Cao S G, et al. Microstructure and mechanical properties of 15Ni-15Cr oxide dispersion strengthened austenitic steel [J]. Chin. J. Eng., 2023, 45: 107
[11] (赵瑞林, 贾皓东, 曹书光 等. 15Ni-15Cr ODS钢的微观结构与力学性能 [J]. 工程科学学报, 2023, 45: 107)
[12] Zhang J S. A review of steel corrosion by liquid lead and lead-bismuth [J]. Corros. Sci., 2009, 51: 1207
[13] Zhang J S, Li N. Review of the studies on fundamental issues in LBE corrosion [J]. J. Nucl. Mater., 2008, 373: 351
[14] Klok O, Lambrinou K, Gavrilov S, et al. Effect of deformation twinning on dissolution corrosion of 316L stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500 oC [J]. J. Nucl. Mater., 2018, 510: 556
[15] Heinzel A, Weisenburger A, Müller G. Corrosion behavior of austenitic steels in liquid lead bismuth containing 10-6 wt.% and 10-8 wt.% oxygen at 400-500 oC [J]. J. Nucl. Mater., 2014, 448: 163
[16] Zhang X Y, Li C, Wang Y X, et al. Research progress on liquid metal corrosion behavior of structural steels for lead fast reactor [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1216
[16] (张心怡, 李 聪, 汪禹熙 等. 铅基堆结构材料液态金属腐蚀行为的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 1216)
[17] Shi X M, Tan J B, Zhang Z Y, et al. A review on fatigue behavior of candidate structure materials for lead-cooled fast reactors in liquid lead-bismuth eutectic [J]. J. Chin. Soc. Corros. Prot., 2025, 45 (5): 1187
[17] (史轩铭, 谭季波, 张兹瑜 等. 铅冷快堆候选结构材料液态铅铋共晶环境中疲劳行为研究进展 [J]. 中国腐蚀与防护学报, 2025, 45 (5): 1187)
[18] Tsisar V, Schroer C, Wedemeyer O, et al. Long-term corrosion of austenitic steels in flowing LBE at 400 oC and 10-7 mass% dissolved oxygen in comparison with 450 and 550 oC [J]. J. Nucl. Mater., 2016, 468: 305
[19] Barbier F, Benamati G, Fazio C, et al. Compatibility tests of steels in flowing liquid lead-bismuth [J]. J. Nucl. Mater., 2001, 295: 149
[20] Tsisar V, Schroer C, Wedemeyer O, et al. Corrosion behavior of austenitic steels 1.4970, 316L and 1.4571 in flowing LBE at 450 and 550 oC with 10-7 mass% dissolved oxygen [J]. J. Nucl. Mater., 2014, 454: 332
[21] Yamamoto Y, Brady M P, Lu Z P, et al. Creep-resistant, Al2O3-forming austenitic stainless steels [J]. Science, 2007, 316: 433
[22] Brady M P, Yamamoto Y, Santella M L, et al. The development of alumina-forming austenitic stainless steels for high-temperature structural use [J]. JOM, 2008, 60: 12
[23] Tsisar V, Stergar E, Gavrilov S, et al. Effect of variation in oxygen concentration in static Pb-Bi eutectic on long-term corrosion performance of Al-alloyed austenitic steels at 500 oC [J]. Corros. Sci., 2022, 195: 109963
[24] Shen L, Cao G Q, Lang D, et al. Fe-14Ni-14Cr-2.5Al steel showing excellent corrosion-resistance in flowing LBE at 550 oC and high temperature strength [J]. J. Nucl. Mater., 2023, 587: 154703
[25] Gao Q Z, Liu Z Y, Li H J, et al. High-temperature oxidation behavior of modified 4Al alumina-forming austenitic steel: Effect of cold rolling [J]. J. Mater. Sci. Technol., 2021, 68: 91
[26] Wu Y, Xie A, Chen S H, et al. Corrosion behavior of NbC and its effect on corrosion layer formation in liquid lead-bismuth eutectic of Nb-containing austenitic stainless steel [J]. Acta Metall. Sin., 2025, 61: 287
[26] (吴 炀, 谢 昂, 陈胜虎 等. 含Nb奥氏体不锈钢中NbC的液态Pb-Bi共晶腐蚀行为及其对氧化层形成的影响 [J]. 金属学报, 2025, 61: 287)
[27] Xu G F, Li Y, Lei Y C, et al. Effect of relative flow velocity on corrosion behavior of high nitrogen austenitic stainless steel in liquid lead-bismuth eutectic alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 899
[27] (徐桂芳, 李 园, 雷玉成 等. 相对流速对高氮奥氏体不锈钢在液态铅铋共晶合金中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 899)
[28] Zhu Z G, Tan J B, Wu X Q, et al. Corrosion behaviors of FeCrAl alloys exposed to oxygen-saturated static lead bismuth eutectic at 550 oC [J]. Corros. Sci., 2022, 209: 110767
[29] Martinelli L, Balbaud-Célérier F, Terlain A, et al. Oxidation mechanism of an Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy at 470 oC (Part II) [J]. Corros. Sci., 2008, 50: 2537
[30] Popovic M P, Chen K, Shen H, et al. A study of deformation and strain induced in bulk by the oxide layers formation on a Fe-Cr-Al alloy in high-temperature liquid Pb-Bi eutectic [J]. Acta Mater., 2018, 151: 301
[31] Gong X, Short M P, Auger T, et al. Environmental degradation of structural materials in liquid lead- and lead-bismuth eutectic-cooled reactors [J]. Prog. Mater. Sci., 2022, 126: 100920
[1] 胡蕴媛, 钱伟, 花银群, 叶云霞, 蔡杰, 戴峰泽. 预腐蚀工艺对Gd2Zr2O7陶瓷抗CMAS腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(4): 687-692.
[2] 王海卫, 常森, 栾新刚, 宋雪梅, 王稹, 李彦樟, 陈建利, 张计荣, 韩明, 丘丹圭. 纳米Al2O3改性SiBCN陶瓷高温粘接剂的制备与性能研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 367-372.
[3] 杨寅初,傅秀清,刘琳,马文科,沈莫奇. 喷射电沉积Ni-P-BN(h)-Al2O3复合镀层的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[4] 刘光明, 杨晓东, 林继月, 田继红. Al2O3/有机硅/SiO2杂化涂层电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2013, 33(6): 527-531.
[5] 陈斌锴 仲海峰 张启富. 锌液中Al含量对440 MPa级高强IF钢镀层的组织结构及抑制层的影响[J]. 中国腐蚀与防护学报, 2013, 33(2): 171-174.
[6] 黄本生,江仲英,潘欢欢,袁鹏斌,刘清友. 热处理工艺对G105钻杆材料抗腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2012, 32(1): 67-69.
[7] 彭成章,朱玲玲. 热处理对Ni-P/纳米Al2O3复合镀层组织及耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2011, 31(3): 179-183.
[8] 李春福 王 戎 牛艳花 朱泽华 李天雷. 纳米掺杂对Al2O3+13%TiO2等离子喷涂涂层耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2008, 28(6期): 331-336.