Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (6): 1443-1453     CSTR: 32134.14.1005.4537.2024.039      DOI: 10.11902/1005.4537.2024.039
  研究报告 本期目录 | 过刊浏览 |
基于接地材料功能需求的耐蚀铸铁表面改性研究
陆添爱, 蒋文昊, 吴伟, 张俊喜()
上海电力大学 上海市电力材料防护与新材料重点实验室 上海 200090
Surface Modification of Corrosion-resistant Cast Iron Based on Functional Requirements of Grounding Materials
LU Tianai, JIANG Wenhao, WU Wei, ZHANG Junxi()
Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
引用本文:

陆添爱, 蒋文昊, 吴伟, 张俊喜. 基于接地材料功能需求的耐蚀铸铁表面改性研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1443-1453.
Tianai LU, Wenhao JIANG, Wei WU, Junxi ZHANG. Surface Modification of Corrosion-resistant Cast Iron Based on Functional Requirements of Grounding Materials[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1443-1453.

全文: PDF(22381 KB)   HTML
摘要: 

电力系统对接地材料的耐蚀性、导电性和成本要求越来越高,因此研发一种新型接地材料至关重要。本研究采用环氧树脂为碳源,控制不同的渗碳温度和保温时间对铸铁表面进行渗碳。采用XRD、Raman、SEM、金相分析、电化学腐蚀实验等方法,研究不同渗碳参数对渗碳层和铸铁基体的组织特征、成分和耐蚀性的影响。研究表明,渗碳铸铁表面形成明显渗碳层,主要成分为Fe3C,耐蚀性显著提高,最优渗碳参数为以5℃/min从室温升至750℃后炉冷。合金铸铁表面采用渗碳工艺可显著提高其耐蚀性和导电性,能够满足接地材料功能需求。

关键词 接地网铸铁渗碳耐蚀性电化学测量    
Abstract

The requirements of power system for the corrosion resistance, conductivity and cost of grounding materials are increasing, so it is crucial to develop a new type of grounding materials. Herein, the cast iron was surface modified by carburization with epoxy resin as the carbon source, while controlling heating rate, holding temperature and time. The effect of heat treatment parameters on the microstructure, composition and corrosion resistance of the cast iron before and after carburization were comparatively charachterized by means of XRD, SEM, metallography, Raman spestroscopy, and electrochemical corrosion test. The results showed that there was an obvious carburization coating formed on the cast iron surface, which was mainly Fe3C, thereby the corrosion resistance of the carbuurized cast iron was significantly improved. The best carburizing parameter is to heat up from room temperature to 750oC at a rate of 5oC/min, followed by furnace cooling. The carburization treatment to certain extent process can significantly enhance the corrosion resistance and conductivity of the cast iron, which met the functional requirements of grounding materials.

Key wordsgrounding net    cast iron    carburizing    corrosion resistance    electrochemical measurement
收稿日期: 2024-01-26      32134.14.1005.4537.2024.039
ZTFLH:  TG172  
通讯作者: 张俊喜,E-mail:zhangjunxi@shiep.edu.cn,研究方向为电力材料腐蚀与防护
Corresponding author: ZHANG Junxi, E-mail: zhangjunxi@shiep.edu.cn
作者简介: 陆添爱,女,1998年生,硕士生
图1  不同条件下形成的渗碳层的表面和截面显微形貌
图2  不同条件下形成的渗碳层的XRD谱和Raman谱
图3  原始铸铁基体的金相照片
图4  不同条件渗碳后铸铁基体石墨形态图
图5  不同条件渗碳后铸铁基体中渗碳体形态
图6  环氧树脂渗碳机理示意图
图7  原始铸铁和不同渗碳条件样品在土壤模拟液中的极化曲线及拟合的腐蚀速率
图8  原始以及经750℃下保温0 h渗碳处理的铸铁在土壤模拟液中浸泡不同时间后的极化曲线以及相应的腐蚀速率
图9  原始以及经750℃下保温0 h渗碳处理的铸铁在NS4土壤模拟液中浸泡不同时间后的电化学阻抗曲线
Time / dUntreatedCarburized cast iron
Rs / Ω∙cm2Rf / Ω∙cm2Rct / Ω∙cm2Rs / Ω∙cm2Rf / Ω∙cm2Rct / Ω∙cm2
7516.3410.8642.8455.9390.76142
14462.1405928.5365.7385.27175
21530.8437.5732.2417.5358.47382
28306.9309.4898.5447409.77593
35397.2268428.8381.85376.26928
表1  不同时间下NS4土壤模拟液中铸铁的阻抗谱拟合参数
图10  原始以及经750℃下保温0 h渗碳处理的铸铁在NS4土壤模拟液中浸泡35 d后的截面形貌
图11  原始和经750℃下保温0 h渗碳处理的铸铁以及镀锌钢在NS4土壤模拟液中不同交流电流强度下的极化曲线及拟合腐蚀速率
1 Zhang C, Liao Y X, Gao X, et al. Research advances of soil corrosion of grounding grids [J]. Micromachines, 2021, 12: 513
2 Zhang B, He J L, Jiang Y K. Safety performance of large grounding grid with fault current injected from multiple grounding points [J]. IEEE Trans. Ind. Appl., 2015, 51: 5116
3 Hu H Z, Luo R C, Fang M G, et al. A new optimization design for grounding grid [J]. Int. J. Electr. Power Energy Syst., 2019, 108: 61
4 Zhou M, Wang J G, Liu Y, et al. Causes, forms and remedies of substation grounding grid corrosion [A]. Proceedings of the 2008 International Conference on High Voltage Engineering and Application [C]. Chongqing, China, 2008: 186
5 Bian Y F, Tang W M, Zhang J, et al. Soil corrosion characteristics of Q235 steel grounding material used in power grid in Anhui Province [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 130
5 (卞亚飞, 汤文明, 张 洁 等. 安徽省电网接地材料Q235钢的土壤腐蚀特性及规律性研究 [J]. 中国腐蚀与防护学报, 2024, 44: 130)
6 Barbalat M, Lanarde L, Caron D, et al. Electrochemical study of the corrosion rate of carbon steel in soil: evolution with time and determination of residual corrosion rates under cathodic protection [J]. Corros. Sci., 2012, 55: 246
7 Abdel-Salam M, Ahmed A, Nayel M, et al. Surface potential and resistance of grounding grid systems in homogeneous soil [J]. Electr. Power Compon. Syst., 2007, 35: 1093
8 Lv K C, Xu S, Liu L L, et al. Comparative study on the corrosion behaviours of high-silicon chromium iron and Q235 steel in a soil solution [J]. Int. J. Electrochem. Sci., 2020, 15: 5193
9 Datta A J, Taylor R, Will G, et al. An investigation of earth grid performance using graphene-coated copper [J]. IEEE Access, 2015, 3: 1042
10 Bertling S, Wallinder I O, Kleja D B, et al. Long-term corrosion-induced copper runoff from natural and artificial patina and its environmental impact [J]. Environ. Toxicol. Chem., 2006, 25: 891
pmid: 16566176
11 Gao Y B, Du X G, Wang Q W, et al. Corrosion behavior of copper in a simulated grounding condition in electric power grid [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 435
11 (高义斌, 杜晓刚, 王启伟 等. 铜在电网接地工况下的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 435)
doi: 10.11902/1005.4537.2022.098
12 Guo Y B, Tan H, Wang D G, et al. Effects of alternating stray current on the corrosion behaviours of buried Q235 steel pipelines [J]. Anti-Corros. Methods Mater., 2017, 64: 599
13 Zhu Z P, Shi C, Zhang Y, et al. The effects of Cl- and direct stray current on soil corrosion of three grounding grid materials [J]. Anti-Corros. Methods Mater., 2020, 67: 73
14 Denison I A, Romanoff M. Corrosion of galvanized steel in soils [J]. J. Res. Natl. Bur. Stand., 1952, 49: 299
15 Zhang H, Yang Z, Tao D, et al. Effect of low carbon equivalent on microstructure and properties of gray cast iron [J]. Hot Work. Technol., 2023, 52(1): 52
15 (张 宏, 杨 忠, 陶 栋 等. 低碳当量对灰铸铁组织和性能的影响 [J]. 热加工工艺, 2023, 52(1): 52)
16 Wu D H, Wang H L, Zhang B M. Alloying of cast iron and classification of alloy cast iron [J]. Foundry Eng., 2020, 44(3): 10
16 (吴德海, 王怀林, 张伯明. 铸铁的合金化及合金铸铁的分类 [J]. 铸造工程, 2020, 44(3): 10)
17 Wang Y F, Xiong J, Sun L, et al. Research status in corrosion resistant cast iron under marine environment [J]. Hot Work. Technol., 2008, 37(22): 95
17 (王艳芬, 熊 计, 孙 兰 等. 海洋环境下耐蚀铸铁的研究现状 [J]. 热加工工艺, 2008, 37(22): 95)
18 Deng D W, Niu T T, Liu H Y, et al. Microstructure evolution and corrosion property of medium-carbon alloy steel after high-temperature carburization process [J]. Surf. Rev. Lett., 2016, 23: 1650038
19 Zhao Y C, He R F, Zhang B, et al. Research progress of ion implantation composite surface modification technology [J]. Surf. Technol., 2024, 53(5): 18
19 (赵燕春, 何瑞芳, 张 斌 等. 离子注渗复合表面改性技术研究进展 [J]. 表面技术, 2024, 53(5): 18)
20 Nie X H, Wang G F, Zhao J L, et al. Corrosion process and mechanism analysis of the HFW pipe in NS4 and Yingtan soil simulated solution [J]. Welded Pipe Tube, 2014, 37(7): 18
20 (聂向晖, 王高峰, 赵金兰 等. HFW焊管在NS4及鹰潭土壤模拟溶液中的腐蚀及机理分析 [J]. 焊管, 2014, 37(7): 18)
21 Wang Q W, Zhang J X, Gao Y, et al. Galvanic effect and alternating current corrosion of steel in acidic red soil [J]. Metals, 2022, 12: 296
22 Yang Y, Yan M F, Zhang Y X, et al. Self-lubricating and anti-corrosion amorphous carbon/Fe3C composite coating on M50NiL steel by low temperature plasma carburizing [J]. Surf. Coat. Technol., 2016, 304: 142
23 Yang G R, Song W M, Sun X M, et al. The high temperature property of Ni/WC infiltrated composite layer on cast iron substrate [J]. Adv. Mater. Res., 2010, 97-101: 1295
24 Du B S, Mi C X, Wang X, et al. Effect of austenitizing temperature on friction and wear properties of austempered ductile iron [J]. Heat Treat. Met., 2023, 48(11): 149
24 (杜宝帅, 米春旭, 王 鑫 等. 奥氏体化温度对等温淬火球墨铸铁摩擦磨损性能的影响 [J]. 金属热处理, 2023, 48(11): 149)
25 de Souza Lamim T, Bernardelli E A, Binder C, et al. Plasma carburizing of sintered pure iron at low temperature [J]. Mater. Res., 2015, 18: 320
26 Pradhan S K, Nayak B B, Mohapatra B K, et al. Micro raman spectroscopy and electron probe microanalysis of graphite spherulites and flakes in cast iron [J]. Metall. Mater. Trans., 2007, 38A: 2363
27 Gao M Q, Qu Y D, Li G L, et al. Cementites decomposition of a pearlitic ductile cast iron during graphitization annealing heat treatment [J]. J. Iron Steel Res. Int., 2017, 24: 838
28 Schneider A, Inden G. Carbon diffusion in cementite (Fe3C) and Hägg carbide (Fe5C2) [J]. Calphad, 2007, 31: 141
29 Cui J, Lu M K, Li H L, et al. Corrosion behavior and mechanism of vermicular graphite cast iron in neutral salt spray [J]. Surf. Technol., 2020, 49(6): 267
29 (崔 静, 路梦柯, 李虎林 等. 蠕墨铸铁中性盐雾腐蚀行为及机理研究 [J]. 表面技术, 2020, 49(6): 267)
30 Ku J H. Strengthening cast iron by use of rare earth elements [J]. Foreign Locomot. Rolling Stock Technol., 2010, (3): 28
30 (堀江皓. 使用稀土元素实现铸铁高强度化的方法 [J]. 国外机车车辆工艺, 2010, (3): 28)
31 Lan X W, Dong J H. Research on the alkali corrosion resistance property of low alloy cast iron containing rare earth [J]. Chin. Rare Earths, 2010, 31(4): 1
31 (兰孝文, 董俊慧. 加稀土低合金铸铁耐碱腐蚀性能研究 [J]. 稀土, 2010, 31(4): 1)
32 Gao Y W, Kong X L, Li P M, et al. Effect of discharge temperature during annealing at 750oC on microstructure and properties of QT450-10 nodular cast iron [J]. Heat Treat. Met., 2022, 47(1): 261
32 (高永旺, 孔祥玲, 李鹏明 等. 750℃退火出炉温度对QT450-10球墨铸铁组织与性能的影响 [J]. 金属热处理, 2022, 47(1): 261)
doi: 10.13251/j.issn.0254-6051.2022.01.043
33 Zhang H J, Chen L S. Corrosion shape and corrosion mechanism of pearlite [J]. Shanxi Metall., 2011, 34(4): 10
33 (张贺佳, 陈连生. 珠光体片层腐蚀形态与机理 [J]. 山西冶金, 2011, 34(4): 10)
34 Xiao Z W, Dang B. Effect of heat deformation heating temperature on microstructure evolution and hardness of GCr15SiMn cementite [J]. Intern. Combust. Engine Parts, 2022, (16): 106
34 (肖政旺, 党 波. 加热温度对GCr15SiMn渗碳体组织的影响 [J]. 内燃机与配件, 2022, (16): 106)
35 Ochoa N, Mardaras E, González-Martínez R, et al. Pseudo-passive films on cast irons: a strategy to mitigate corrosion by acting directly on microstructure [J]. Corros. Sci., 2022, 206: 110480
36 Yada K, Watanabe O. Reactive flow simulation of vacuum carburizing by acetylene gas [J]. Comput. Fluids, 2013, 79: 65
37 Ren Z. Research progress of metal dusting mechanisms and countermeasures [J]. Corros. Prot. Petrochem. Ind., 2021, 38(4): 1
37 (任 重. 金属粉化机理及应对措施的研究进展 [J]. 石油化工腐蚀与防护, 2021, 38(4): 1)
38 Ni H W, Cang D Q, Jiang J P. Effect of reaction temperature and gas composition on formation of iron carbide [J]. Res. Iron Steel, 1999, 27(6): 22
38 (倪红卫, 苍大强, 姜钧普. 反应温度、气氛对碳化铁制备过程的影响 [J]. 钢铁研究, 1999, 27(6): 22)
39 Li Q C, Lin D S, Yang X P, et al. In situ observation of graphitization of cementite in ductile cast iron during heating [J]. Trans. Mater. Heat Treat., 2011, 32(10): 80
39 (李青春, 林大帅, 杨晓平 等. 球墨铸铁加热过程中渗碳体石墨化的原位观察 [J]. 材料热处理学报, 2011, 32(10): 80)
40 Dai Y, Wu X, Yang F, et al. Corrosion and wear properties of carburized layer on TC6 titanium alloy in different environments [J]. China Surf. Eng., 2020, 33(2): 47
40 (代 燕, 吴 旋, 杨 峰 等. TC6钛合金渗碳层在不同介质环境中的腐蚀磨损性能 [J]. 中国表面工程, 2020, 33(2): 47)
41 Li M C, Lin H C, Cao C N. Study on soil corrosion of carbon steel by Electrochemical impedance spectroscopy (EIS) [J]. J. Chin. Soc. Corros. Prot., 2000, 20: 111
41 (李谋成, 林海潮, 曹楚南. 碳钢在土壤中腐蚀的电化学阻抗谱特征 [J]. 中国腐蚀与防护学报, 2000, 20: 111)
42 Oliveira V M C A, Aguiar C, Vazquez A M, et al. Improving corrosion resistance of Ti-6Al-4V alloy through plasma-assisted PVD deposited nitride coatings [J]. Corros. Sci., 2014, 88: 317
43 Che M J, Zhou S X, Du X J, et al. Influence of tempering temperature on corrosion resistance of EH890 marine engineering steel [J]. Heat Treat. Met., 2022, 47(10): 147
doi: 10.13251/j.issn.0254-6051.2022.10.024
43 (车马俊, 周生璇, 杜晓洁 等. 回火温度对EH890海洋工程用钢耐蚀性能的影响 [J]. 金属热处理, 2022, 47(10): 147)
doi: 10.13251/j.issn.0254-6051.2022.10.024
44 Gao Z Y, Jiang B, Fan Z B, et al. Corrosion behavior of typical grounding materials in artificial alkaline soil solution [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 191
44 (高智悦, 姜 波, 樊志彬 等. 典型接地材料在碱性土壤模拟液中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 191)
doi: 10.11902/1005.4537.2022.061
45 Siriwardane H, Pringle O A, Newkirk J W, et al. Microstructure and physical properties of iron carbide films formed by plasma enhanced chemical vapor deposition [J]. Thin Solid Films, 1996, 287: 8
46 Kuang D, Cheng Y F. Understand the AC induced pitting corrosion on pipelines in both high pH and neutral pH carbonate/bicarbonate solutions [J]. Corros. Sci., 2014, 85: 304
47 Qiao C, Shen L F, Hao L, et al. Corrosion kinetics and patina evolution of galvanized steel in a simulated coastal-industrial atmosphere [J]. J. Mater. Sci. Technol., 2019, 35: 2345
doi: 10.1016/j.jmst.2019.05.039
48 Zhang Z L, Zou J, Dan Y H, et al. Analysis the influence of corrosion layer on the grounding performance of grounding electrodes [J]. IET Gener. Transm. Distrib., 2020, 14: 2602
[1] 魏珂正, 蒋文龙, 龚奕维, 裘欣, 丁汉林, 项重辰, 王子健. 时效时间对锻态AZ80镁合金第二相析出及柱面取向表面腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1557-1565.
[2] 马晋遥, 董楠, 郭振森, 韩培德. B、Ce微合金化对S31254超级奥氏体不锈钢析出相及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1610-1616.
[3] 程永贺, 付俊伟, 赵茂密, 沈云军. 高熵合金耐蚀性研究进展[J]. 中国腐蚀与防护学报, 2024, 44(5): 1100-1116.
[4] 田梦真, 王勇, 李涛, 汪川, 郭泉忠, 郭建喜. 电参数对AZ31B镁合金微弧氧化膜能耗及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 1064-1072.
[5] 巫海亮, 陈宇强, 黄亮, 顾宏宇, 孙宏博, 刘佳俊, 王乃光, 宋宇峰. 高铁散热器用3003铝合金焊接隔板的腐蚀机理研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1081-1088.
[6] 张吉昊, 徐亚程, 贾学远, 高荣杰. B10铜合金超双疏表面的制备及其性能研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 909-917.
[7] 何佳璇, 张羽彤, 管旭东, 唐建华, 黄海, 赵旭辉, 唐聿明, 左禹. 铝合金微通道换热器的腐蚀防护现状与进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 993-1000.
[8] 师超, 李嘉浩, 王荣祥, 张博, 周兰欣, 刘光明, 邵亚薇. 不同偏压对45#钢电弧离子镀铝层耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 323-334.
[9] 谢云, 刘婷, 王雯, 周佳琳, 唐颂. 微观组织对一种超轻高强镁锂合金耐蚀性的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 255-260.
[10] 孙硕, 代珈铭, 宋影伟, 艾彩娇. 挤压态EW75稀土镁合金在沈阳工业大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[11] 商婷, 蒋光锐, 刘广会, 秦汉成. 热处理对Zn-6%Al-3%Mg镀层微观组织与耐蚀性的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1413-1418.
[12] 杨海峰, 袁志钟, 李健, 周乃鹏, 高峰. Ni含量对铜时效易焊接钢在模拟热带海洋大气环境下的腐蚀行为影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[13] 陈肖寒, 白杨, 王志超, 陈从棕, 张勇, 崔显林, 左娟娟, 王同良. 低表面处理环氧防腐底漆的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[14] 吴嘉豪, 吴量, 姚文辉, 袁媛, 谢治辉, 王敬丰, 潘复生. Mg-Gd-Y-Zn-Mn合金不同微弧氧化表面MgAlLa层状双羟基金属氧化物复合涂层的性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[15] 肖檬, 王勤英, 张兴寿, 西宇辰, 白树林, 董立谨, 张进, 杨俊杰. 激光淬火对AISI 4130钢微观组织结构及腐蚀、磨损行为的影响机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.