Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (3): 631-642     CSTR: 32134.14.1005.4537.2024.191      DOI: 10.11902/1005.4537.2024.191
  研究报告 本期目录 | 过刊浏览 |
海南滨海大气环境中棘孢曲霉对铝合金腐蚀行为影响
宋晓稳1, 白苗苗2, 陈娜娜1, 高逸晖3, 冯亚丽1, 刘倩倩1, 张尧尧4, 卢琳1, 吴俊升1, 肖葵1()
1.北京科技大学新材料技术研究院 北京 100083
2.广汽零部件有限公司技术中心 广州 510050
3.中国电子科技集团公司第二十研究所 西安 710068
4.华中师范大学生命科学学院 武汉 430079
Effect of Aspergillus Aculeatus on Corrosion Behavior of 5A02 Al-alloy in Coastal Atmospheric Environment of Hainan Island
SONG Xiaowen1, BAI Miaomiao2, CHEN Nana1, GAO Yihui3, FENG Yali1, LIU Qianqian1, ZHANG Yaoyao4, LU Lin1, WU Junsheng1, XIAO Kui1()
1.Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2.Technical Center of Guangzhou Automobile Parts Co., Ltd., Guangzhou 510050, China
3.Twentieth Research Institute of China Electronics Technology Corporation, Xi'an 710068, China
4.School of Life Sciences, Central China Normal University, Wuhan 430079, China
引用本文:

宋晓稳, 白苗苗, 陈娜娜, 高逸晖, 冯亚丽, 刘倩倩, 张尧尧, 卢琳, 吴俊升, 肖葵. 海南滨海大气环境中棘孢曲霉对铝合金腐蚀行为影响[J]. 中国腐蚀与防护学报, 2025, 45(3): 631-642.
Xiaowen SONG, Miaomiao BAI, Nana CHEN, Yihui GAO, Yali FENG, Qianqian LIU, Yaoyao ZHANG, Lin LU, Junsheng WU, Kui XIAO. Effect of Aspergillus Aculeatus on Corrosion Behavior of 5A02 Al-alloy in Coastal Atmospheric Environment of Hainan Island[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 631-642.

全文: PDF(33456 KB)   HTML
摘要: 

通过模拟海南滨海大气环境来研究棘孢曲霉对5A02铝合金的腐蚀行为影响机理。利用平板培养法筛选出棘孢曲霉,将其孢子悬浮液滴到试样表面并设置对照组,置于30 ℃恒温箱中,利用扫描电子显微镜(SEM)、能谱仪(EDS)和X射线光电子能谱(XPS)对试样表面腐蚀形貌和成分进行分析,并观察霉菌的生长状态。使用电化学工作站及扫描Kelvin探针(SKP)分析铝合金表面不同时间棘孢曲霉作用下的腐蚀电位。结果表明,棘孢曲霉会对铝合金材料造成局部腐蚀,腐蚀产物主要由AlO(OH)、Al2O3和MgO组成。棘孢曲霉生命活动会产生以草酸为主的多种有机酸,造成环境pH值出现先降低后上升的趋势,可加速腐蚀过程。有菌组的电位变化幅度更大且整体电位较无菌组更负,且有菌组电位随着时间的变化先升高后降低。腐蚀机理主要为霉菌代谢产物腐蚀和氧浓差腐蚀,Cl-起到促进霉菌生长和加速腐蚀的作用。

关键词 棘孢曲霉滨海大气环境铝合金腐蚀形貌腐蚀电位腐蚀机理    
Abstract

To study the influence of Aspergillus aculeatus on the corrosion behavior of Al-alloys, the single colony of Aspergillus aculeatus was isolated and screened from the petri dishes exposed to the coastal atmospheric environment of Hainan Island. The diluted spore suspension of Aspergillus aculeatus with concentration of 1 × 105 /mL was sprayed on the surface of 5A02 Al-alloy samples as groups inoculated with fungi, and sterile control groups were also set up, thereafter, which all placed in a 30 ℃ incubator for selected period of time, while the pH and acid concentration of the bacterial solution were measured intermittently. The test samples were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) in terms of their surface morphology and composition, and the growth of fungi was also observed. The corrosion potential of the Al-alloys surface under the action of Aspergillus aculeatus for different time were analyzed by electrochemical workstation and scanning Kelvin probe (SKP). Results indicated that Aspergillus aculeatus caused localized corrosion of the Al-alloy samples, their corrosion products mainly composed of AlO(OH), Al2O3, and MgO. The metabolic activities of Aspergillus aculeatus produced various organic acids, primarily oxalic acid, leading to a trend of decreasing and then increasing in the surrounding pH, thereby promoting the corrosion of the Al-alloy. The range of potential change of the group with fungi was greater, with overall potentials more negative than that of the sterile group. The potential of the group with fungi, initially increased and then decreased with time. The corrosion mechanisms primarily involved fungi metabolite corrosion and oxygen-concentration cell corrosion, while the chloride ions play a role in facilitating the growth of fungi and accelerating the corrosion.

Key wordsAspergillus aculeatus    coastal atmospheric environment    Al-alloy    corrosion morphology    corrosion potential    corrosion mechanism
收稿日期: 2024-06-25      32134.14.1005.4537.2024.191
ZTFLH:  TG172.3  
基金资助:国家自然科学基金(51971032)
通讯作者: 肖葵,E-mail:xiaokui@ustb.edu.cn,研究方向为金属材料大气腐蚀行为与机理研究、材料服役环境损伤机理和环境腐蚀评价、电子材料环境损伤行为与防护工艺研究、金属材料微生物腐蚀行为与机理、材料环境腐蚀数据库设计与建设
Corresponding author: XIAO Kui, E-mail: xiaokui@ustb.edu.cn
作者简介: 宋晓稳,女,2001年生,硕士生
图1  液体培养基棘孢曲霉的pH值变化
Time dpH

Oxalic acid

mg/mL

Tartaric acid

mg/mL

Malic acid

mg/mL

Lactic acid

mg/mL

Acetic acid

mg/mL

Citric acid

mg/mL

16.033234.818.621.38.125.414.9
34.383571.919.523.72.531.51.8
54.894560.020.730.24.325.42.3
75.995003.121.231.20.818.72.9
105.236074.324.738.11.34.51.1
145.566223.935.267.50.42.90.1
表1  液体培养基棘孢曲霉的有机酸浓度
图2  无菌组在不同暴露时间后的5A02铝合金表面宏观形貌
图3  有菌组在不同暴露时间后的5A02铝合金表面宏观形貌
图4  暴露14 d试样除锈后表面共聚焦形貌
AreaHorizon / μmVertical / μm
ab125.3564.393
cd513.08610.139
表2  在0.01%NaCl薄液膜下试样表面蚀坑参数
图5  无菌组在不同暴露时间后的5A02铝合金表面微观形貌
PositionAlClOCNaMgTotal
A59.680.8420.8517.03-1.6100
B85.45-6.206.30-2.05100
表3  无菌试样表面EDS元素含量 (mass fraction / %)
图6  有菌组在不同暴露时间后的5A02铝合金表面微观形貌
PositionAlClOCNaMgTotal
A51.210.328.6638.130.531.15100.00
B28.7731.2124.0915.120.490.32100.00
C32.143.7357.584.281.580.69100.00
表4  有菌组试样表面EDS元素含量 (mass fraction / %)
图7  霉菌腐蚀后的5A02铝合金样品表面的能谱面扫描元素分布图
图8  霉菌腐蚀后的5A02铝合金样品表面的XPS谱图
图9  5A02铝合金试样暴露不同时间后表面SKP电位分布图
Aspergillus aculeatusμ / Vσ2Sterileμ / Vσ2
a-0.768801.309912e-0.316400.873802
b0.110450.120542f0.229380.1191912
c-0.755146.620632g-0.390340.144492
d-0.825540.539902h-0.504510.531992
表5  5A02铝合金样品表面Kelvin电势分布的高斯拟合参数
[1] Wang X N, Chen X M, Huan P C, et al. Review of laser-arc hybrid welding process of aluminum alloys for new energy vehicles (Invited) [J]. Chin. J. Lasers, 2024, 51: 0402102
[1] 王晓南, 陈夏明, 环鹏程 等. 新能源汽车用铝合金激光-电弧复合焊接研究进展(特邀) [J]. 中国激光, 2024, 51: 0402102
[2] Li D Q. Corrosion resistance of marine aluminum alloy and its application on ships and warships [J]. Alum. Fabr., 2023, (6): 7
[2] 李德奇. 海洋铝合金的抗蚀性及其在舰船上的应用 [J]. 铝加工, 2023, (6): 7
[3] Wang Z Q, Xue H, Li J M, et al. Research progress and applications of conductive aluminum alloys used in transportation [J]. Mod. Transp. Metall. Mater., 2024, 4(1): 11
[3] 王志琪, 薛 昊, 李佳铭 等. 交通运输用导电铝合金的应用现状及研究进展 [J]. 现代交通与冶金材料, 2024, 4(1): 11
[4] Zhao W B, Chang W J, Dai H F, et al. Chemical constituents from marine-derived fungus Aspergillus insulicola [J]. Chin. J. Mar. Drugs, 2023, 42(6): 61
[4] 赵伟博, 畅文军, 戴好富 等. 深海曲霉属真菌Aspergillus insulicola的化学成分研究 [J]. 中国海洋药物, 2023, 42(6): 61
[5] Liang H Q, Chen W F, Fan Y K, et al. Research progress on the secondary metabolites and activities of endophytic fungi of genus Aspergillus and Trichoderma from mangroves [J]. J. Trop. Oceanogr., 2023, 42(4): 12
[5] 梁寒峭, 陈文凤, 范益铠 等. 红树林来源曲霉属和木霉属内生真菌次生代谢产物及活性研究进展 [J]. 热带海洋学报, 2023, 42(4): 12
[6] Wang Y, Zhang Y Q, Xu Z F, et al. Study on the diketopiperazines from the Lumnitzera littorea-derived fungus Aspergillus terreus HT-1 [J]. Chin. J. Mar. Drugs, 2022, 41(6): 10
[6] 王 越, 张玉琴, 徐喆菲 等. 红榄李内生真菌Aspergillus terreus HT-1二酮哌嗪类次级代谢产物研究 [J]. 中国海洋药物, 2022, 41(6): 10
[7] Huang Y, Liu S J, Jiang C Y. Microbiologically influenced corrosion and mechanisms [J]. Microbiol. China, 2017, 44: 1699
[7] 黄 烨, 刘双江, 姜成英. 微生物腐蚀及腐蚀机理研究进展 [J]. 微生物学通报, 2017, 44: 1699
[8] Xu D K, Li Y C, Song F M, et al. Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis [J]. Corros. Sci., 2013, 77: 385
[9] Song B Q, Chen X, Ma G Y, et al. Effect of SRB on corrosion behavior of X70 pipeline steel in near-neutral pH solution [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 212
[9] 宋博强, 陈 旭, 马贵阳 等. SRB对X70管线钢在近中性pH溶液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2016, 36: 212
doi: 10.11902/1005.4537.2015.116
[10] Mei M, Zheng H A, Gao Y, et al. Effect of iron bacteria on corrosion behavior of 20 carbon steel in circulation cooling system [J]. Mater. Prot., 2017, 50(1): 26
[10] 梅 朦, 郑红艾, 高 阳 等. 循环冷却水含铁细菌对20碳钢管壁腐蚀行为的影响 [J]. 材料保护, 2017, 50(1): 26
[11] Yao R, Zhang Q L, Qin F L, et al. Effect of iron bacteria on corrosion behavior of J55 steel [J]. Corros. Prot., 2016, 37: 206
[11] 姚 蓉, 张秋利, 秦芳玲 等. 铁细菌对J55钢腐蚀行为的影响 [J]. 腐蚀与防护, 2016, 37: 206
[12] Deen K M, Yousaf M, Afzal N, et al. Microbiological influenced corrosion attack by Bacillus Megaterium bacteria on Al-Cu alloy [J]. Mater. Technol., 2014, 29: 269
[13] Javed M A, Stoddart P R, Wade S A. Corrosion of carbon steel by sulphate reducing bacteria: Initial attachment and the role of ferrous ions [J]. Corros. Sci., 2015, 93: 48
[14] Chen N N, Liu Q Q, Feng Y L, et al. Microbial corrosion behavior and mechanism of 5A06 aluminum alloy under low dose proton radiation [J]. J. Mater. Res. Technol., 2023, 27: 4533
[15] Jirón-Lazos U, Corvo F, De la Rosa S C, et al. Localized corrosion of aluminum alloy 6061 in the presence of Aspergillus niger [J]. Int. Biodeter. Biodegrad., 2018, 133: 17
[16] Guan F, Duan J Z, Zhai X F, et al. Interaction between sulfate-reducing bacteria and aluminum alloys—Corrosion mechanisms of 5052 and Al-Zn-In-Cd aluminum alloys [J]. J. Mater. Sci. Technol., 2020, 36: 55
doi: 10.1016/j.jmst.2019.07.009
[17] Shen Y Y, Dong Y H, Yang Y, et al. Study of pitting corrosion inhibition effect on aluminum alloy in seawater by biomineralized film [J]. Bioelectrochemistry, 2020, 132: 107408
[18] Yang L, Lübeck M, Lübeck P S. Aspergillus as a versatile cell factory for organic acid production [J]. Fungal Biol. Rev., 2017, 31: 33
[19] Dezam A P G, Vasconcellos V M, Lacava P T, et al. Microbial production of organic acids by endophytic fungi [J]. Biocatal. Agric. Biotechnol., 2017, 11: 282
[20] Yousef A E, Marth E H. Growth and synthesis of aflatoxin by Aspergillus parasiticus in the presence of sorbic acid [J]. J. Food Prot., 1981, 44: 736
doi: 10.4315/0362-028X-44.10.736 pmid: 30856758
[21] Yang W Z, Tu J, Liu N, et al. Advances in signal regulation and detection strategies for autophagy in fungal cells [J]. Acta Pharm. Sin., 2020, 55: 1431
[21] 杨万镇, 涂 杰, 刘 娜 等. 真菌细胞自噬的信号调节和检测策略研究进展 [J]. 药学学报, 2020, 55: 1431
[22] Chen J, Chu J, Zhuang Y P, et al. Correlation between organic acids accumulation and biosynthesis of avermectin [J]. J. East China Univ. Sci. Technol. (Nat. Sci. Ed.), 2005, 31: 731
[22] 谌 颉, 储 炬, 庄英萍 等. 阿维菌素发酵过程有机酸积累规律与生物合成的关系 [J]. 华东理工大学学报(自然科学版), 2005, 31: 731
[23] Zhang Y X, Chen C Y, Liu H W, et al. Research progress on mold corrosion of aluminum alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 13
[23] 张雨轩, 陈翠颖, 刘宏伟 等. 铝合金霉菌腐蚀研究进展 [J]. 腐蚀与防护学报, 2021, 41: 13
[24] Lu J J, Wan Y J, Fu Y Q. Advances in production of organic acid by rhizopus sp.integrated with in-situ product separation process [J]. J. Taizhou Univ., 2012, 34(6): 27
[24] 陆君洁, 万永军, 付永前. 根霉菌反应分离耦合生产有机酸的研究进展 [J]. 台州学院学报, 2012, 34(6): 27
[25] Xu P, Zhao M H, Fu X, et al. Effect of chloride ions on the corrosion behavior of carbon steel in an iron bacteria system [J]. RSC Adv., 2022, 12: 15158
doi: 10.1039/d2ra02410a pmid: 35702434
[26] Qian H C, Zhang J T, Cui T Y, et al. Influence of NaCl concentration on microbiologically influenced corrosion of carbon steel by halophilic archaeon Natronorubrum tibetense [J]. Bioelectrochemistry, 2021, 140: 107746
[27] Feng Y L, Li X M, Zhao Y, et al. Corrosion behaviour of copper under the action of chlorine-containing thin liquid film and Aspergillus versicolor [J]. Surf. Technol., 2022, 51(9): 178
[27] 冯亚丽, 李雪鸣, 赵 永 等. 铜在含氯薄液膜和杂色曲霉作用下的腐蚀行为 [J]. 表面技术, 2022, 51(9): 178
[28] Yang B, Zhong W A, Tang G J, et al. Application progress of corrosion protection for electronic and electrical equipment in coastal space launch sites [J]. Corros. Prot., 2022, 43(3): 1
[28] 杨 波, 钟文安, 唐功建 等. 滨海发射场电子电气设备腐蚀防护应用进展 [J]. 腐蚀与防护, 2022, 43(3): 1
[29] Planý M, Pinzari F, Šoltys K, et al. Fungal-induced atmospheric iron corrosion in an indoor environment [J]. Int. Biodeter. Biodegrad., 2021, 159: 105204
[30] Zou S W, Xiao K, Dong C F, et al. Effect of mold on corrosion behavior of immersion silver finished printed circuit board [J]. Sci. Technol. Rev., 2012, 30(11): 21
doi: 10.3981/j.issn.1000-7857.2012.11.001
[30] 邹士文, 肖 葵, 董超芳 等. 霉菌对化学浸银处理印制电路板腐蚀行为影响 [J]. 科技导报, 2012, 30(11): 21
[31] Guo H W. A simple algorithm for fitting a Gaussian function [DSP tips and tricks] [J]. IEEE Signal Process. Mag., 2011, 28: 134
[32] Miečinskas P, Leinartas K, Uksienė V, et al. QCM study of microbiological activity during long-term exposure to atmosphere—aluminium colonisation by Aspergillus Niger [J]. J. Solid State Electrochem., 2007, 11: 909
[33] He J Q, Tan Y, Liu H X, et al. Extracellular polymeric substances secreted by marine fungus Aspergillus terreus: Full characterization and detailed effects on aluminum alloy corrosion [J]. Corros. Sci., 2022, 209: 110703
[34] Cui T Y, Qian H C, Lou Y T, et al. Single-cell level investigation of microbiologically induced degradation of passive film of stainless steel via FIB-SEM/TEM and multi-mode AFM [J]. Corros. Sci., 2022, 206: 110543
[35] Dong Y Q, Feng D Q, Song G L, et al. The effect of a biofilm-forming bacterium Tenacibaculum mesophilum D-6 on the passive film of stainless steel in the marine environment [J]. Sci. Total Environ., 2022, 815: 152909
[36] Wang J L, Xiong F P, Liu H W, et al. Study of the corrosion behavior of Aspergillus niger on 7075-T6 aluminum alloy in a high salinity environment [J]. Bioelectrochemistry, 2019, 129: 10
[37] Qu Q, Li S L, Li L, et al. Adsorption and corrosion behaviour of Trichoderma harzianum for AZ31B magnesium alloy in artificial seawater [J]. Corros. Sci., 2017, 118: 12
[1] 杜晋, 胡林岚, 孙健, 宋庆华, 陈蒙, 肖金坤. 7075-T6铝合金在3.5%NaCl溶液中的摩擦腐蚀性能研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 803-811.
[2] 王宇晗, 李俊, 刘恒维, 许楠, 刘杰, 陈旭. 海洋环境中金属材料微生物腐蚀研究进展[J]. 中国腐蚀与防护学报, 2025, 45(3): 577-588.
[3] 陈思雨, 王靖羽, 高立强. 桥梁缆索用高强锌铝合金镀层钢丝在中性盐雾环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 827-836.
[4] 刘家兵, 黄诗雨, 郭娜, 郭章伟, 刘涛. 船舶EH40钢在低温和常温海水中的腐蚀机理研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 620-630.
[5] 郑文涛, 陆飞雪, 都凯, 王志惠, 贾海龙. 喷丸工艺对7075铝合金板材表面性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(3): 765-772.
[6] 李丽, 李善文, 史洪微, 梁国平, 李春霖, 孙禹, 秦晋, 王伟, 韩恩厚. 高速列车用铝合金环氧底漆的腐蚀行为和湿热老化机理研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 757-764.
[7] 翟熙伟, 刘士一, 王丽, 贾瑞灵, 张慧霞. 载荷对5383铝合金焊接接头电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 515-522.
[8] 王明洋, 夏大海. 高强铝合金氢脆机理研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 261-270.
[9] 翁硕, 孟超, 罗陵华, 袁奕雯, 赵礼辉, 冯金芝. 基于元胞自动机法的AA7075-T651铝合金在力-化学交互作用下腐蚀损伤特征演化规律研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1507-1517.
[10] 赵骞, 张洁, 毛锐锐, 缪春辉, 卞亚飞, 滕越, 汤文明. Q235钢结构件表面热镀锌层的应力腐蚀及其机理[J]. 中国腐蚀与防护学报, 2024, 44(5): 1305-1315.
[11] 樊志彬, 高智悦, 宗立君, 吴亚平, 李辛庚, 姜波, 杜宝帅. 1050A铝合金在山东不同典型环境中的大气腐蚀行为特征研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1055-1063.
[12] 乔泽, 李清泉, 刘晓航, 李燚周. 中性氯化钠溶液中硝酸根和电偶对7075-T651铝合金缝隙腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1047-1054.
[13] 巫海亮, 陈宇强, 黄亮, 顾宏宇, 孙宏博, 刘佳俊, 王乃光, 宋宇峰. 高铁散热器用3003铝合金焊接隔板的腐蚀机理研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1081-1088.
[14] 吴洋, 安易强, 王力伟, 崔中雨. 镁铝合金在模拟低温条件下大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1001-1010.
[15] 翁硕, 孟超, 朱江峰, 王艾, 常馨, 康妘, 何小田, 赵礼辉. 应力控制模式下疲劳损伤对AA7075-T651铝合金腐蚀行为影响的研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1029-1037.