Please wait a minute...
中国腐蚀与防护学报  2026, Vol. 46 Issue (1): 241-251     CSTR: 32134.14.1005.4537.2025.101      DOI: 10.11902/1005.4537.2025.101
  研究报告 本期目录 | 过刊浏览 |
瓜氨酸/ZnSO4 电解液中锌电极的电化学行为研究
李彩霞, 张运何, 刘丽(), 董立谨, 黄韵()
西南石油大学新能源与材料学院 成都 610500
Anti-corrosion Behavior and Electrochemical Performance of Zinc Electrodes in Citrulline/ZnSO4 Electrolyte
LI Caixia, ZHANG Yunhe, LIU Li(), DONG Lijin, HUANG Yun()
School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
引用本文:

李彩霞, 张运何, 刘丽, 董立谨, 黄韵. 瓜氨酸/ZnSO4 电解液中锌电极的电化学行为研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 241-251.
Caixia LI, Yunhe ZHANG, Li LIU, Lijin DONG, Yun HUANG. Anti-corrosion Behavior and Electrochemical Performance of Zinc Electrodes in Citrulline/ZnSO4 Electrolyte[J]. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 241-251.

全文: PDF(13192 KB)   HTML
摘要: 

采用两性离子瓜氨酸(Cit)作为水系锌离子水电池(ZIBs)电解液添加剂。研究表明,Cit分子会优先吸附在Zn2+表面,取代了Zn2+溶剂鞘中的活性水分子,优化了Zn2+溶剂化结构。同时,Cit易与Zn2+相互配合形成动态静电屏蔽层,抑制了因局部高电流密度集中导致的Zn枝晶失控生长。Cit的协同机制不仅能有效抑制析氢反应(HER)速率,还能显著提高ZIBs的电化学性能。与传统2 mol/L ZnSO4电解液相比,使用Cit/ZnSO4电解质组装的Zn||Zn对称电池具有更优的电化学性能,在1.0 mA·cm-2和1.0 mAh·cm-2条件下循环寿命超过5000 h。本研究为构建长循环寿命、高稳定性的ZIBs提供了有效的设计思路。

关键词 水系锌离子水电池(ZIBs)两性离子瓜氨酸(Cit)溶剂化结构沉积形态HER反应    
Abstract

Zwitterionic citrulline (Cit) was introduced as an additive into a 2 mol/L ZnSO4 electrolyte. Cit molecules preferentially adsorb onto the Zn2+ surface, displacing reactive water molecules within the Zn2+ solvation sheath, thereby optimizing the Zn2+ solvation structure. Simultaneously, Cit coordinates with Zn2+ to form a dynamic electrostatic shielding layer, which suppresses the uncontrolled growth of Zn dendrites caused by localized high current density. The synergistic effect of Cit not only effectively reduces and suppresses the hydrogen evolution reaction (HER) rate but also significantly enhances the electrochemical performance of aqueous zinc-ion batteries (ZIBs). Test results show that batteries assembled with Cit/ZnSO4 electrolyte exhibit superior electrochemical properties compared to those using pristine 2 mol/L ZnSO4. Specifically, the Zn||Cu asymmetric cell with Cit/ZnSO4 electrolyte achieves a cycle life exceeding 500 cycles at 0.5 mA·cm-2 and 0.5 mAh·cm-2. The Zn||Zn symmetric cell maintains stable operation for over 5,000 hours at 1.0 mA·cm-2 and 1.0 mAh·cm-2, and even under harsh conditions of 5.0 mA·cm-2 and 5.0 mAh·cm-2, it sustains 2,500 h of cycling. Furthermore, the Zn||V2O5 full cell retains high-capacity retention after 1,000 cycles by 1.0 A·g-1. This work provides novel insights into the development of efficient electrolyte additives and highlights the practical potential of Cit for high-performance ZIBs.

Key wordsaqueous zinc-ion batteries (ZIBs)    zwitterionic citrulline (Cit)    solvation structure    deposition morphology    HER reaction
收稿日期: 2025-03-26      32134.14.1005.4537.2025.101
ZTFLH:  TG172  
基金资助:国家自然科学基金(52170140);四川省重点研发项目(2025YFHZ0057)
通讯作者: 刘丽,E-mail:10198657@qq.com,研究方向为材料腐蚀防护与表面工程;
黄韵,E-mail:huangyun982@163.com,研究方向为储能器件及材料研发
作者简介: 李彩霞,女,1997年生,硕士生
张运何,男,1998年生,硕士生
图1  Cit结构表征与静电势分布
图2  通过电化学性能筛选最优Cit添加浓度
图3  Cit调节Zn2+溶剂化结构相关理论计算
图4  Cit/ ZnSO4电解液与2 mol/L ZnSO4电解液物理表征
图5  组装Zn||Ti电池的性能表征
图6  Zn||Zn电池循环过程表征
图7  锌沉积过程的原位光学显微镜图
图8  电镀后Zn箔的不同倍率SEM图
图9  组装Zn||Cu电池电化学性能
图10  组装Zn||Zn电池的电化学性能和循环寿命对比
ElectrolyteCurrent density / mAh·cm-2Capacity / mAh·cm-2Cycle time / hRef.
0.1 mol/L ABSA11500[33]
4 mol/L GPC141450[34]
L-CN/ZnSO48.858.85≈1000[35]
[EMIM]OTF/ZnSO455500[36]
Na4EDTA additive22450[37]
ZHA electrolyte111300[38]
CHAE11580[39]
ZnSO4 + Arg104≈900[40]
Zn(BF4)2-DMC-EC33480[23]
ZnSO4-NH4OH55250[41]
2 mol/L Zn(OTf)210.25800[42]
ZnSO4 with GQDs20.21800[43]
ZnSO4 with 20 DMSO112100[44]
Zn(BF4)2-EG-MeOH211600[45]
Cit/ZnSO4115000This work
552500
表1  Zn||Zn电池循环寿命对比
图11  Zn||V2O5全电池自放电曲线
图12  Zn||V2O5全电池电化学性能
[1] Qin R Z, Wang Y T, Yao L, et al. Progress in interface structure and modification of zinc anode for aqueous batteries [J]. Nano Energy, 2022, 98: 107333
doi: 10.1016/j.nanoen.2022.107333
[2] Liang Y L, Dong H, Aurbach D, et al. Current status and future directions of multivalent metal-ion batteries [J]. Nat. Energy, 2020, 5: 646
doi: 10.1038/s41560-020-0655-0
[3] Yu R, Zhang H L, Guo B L. Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering [J]. Nano-Micro Lett., 2022, 14: 1
[4] Yue J S, Chen S, Yang J J, et al. Multi-ion engineering strategies toward high performance aqueous zinc-based batteries [J]. Adv. Mater., 2024, 36: 2304040
doi: 10.1002/adma.v36.2
[5] Liu C X, Xie X S, Lu B G, et al. Electrolyte strategies toward better zinc-ion batteries [J]. ACS Energy Lett., 2021, 6: 1015
doi: 10.1021/acsenergylett.0c02684
[6] Pan H L, Shao Y Y, Yan P F, et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions [J]. Nat. Energy, 2016, 1: 16039
doi: 10.1038/nenergy.2016.39
[7] Huang S W, Hou L, Li T Y, et al. Antifreezing hydrogel electrolyte with ternary hydrogen bonding for high-performance zinc-ion batteries [J]. Adv. Mater., 2022, 34: 2110140
doi: 10.1002/adma.v34.14
[8] Geng L S, Meng J S, Wang X P, et al. Eutectic electrolyte with unique solvation structure for high-performance zinc-ion batteries [J]. Angew. Chem. Int. Ed., 2022, 61: e202206717
doi: 10.1002/anie.v61.31
[9] Song M, Tan H, Chao D L, et al. Recent advances in Zn‐Ion batteries [J]. Adv. Funct. Mater., 2018, 28: 1802564
doi: 10.1002/adfm.v28.41
[10] Zheng W, Qu D Y, Sun Z H, et al. Research progress of zinc ion batteries in zinc metal electrodes and electrolytes [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 548
[10] 郑 微, 曲冬阳, 孙中辉 等. 锌离子电池的锌金属负极和电解液的研究进展 [J]. 中国腐蚀与防护学报, 2025, 45: 548
[11] Zhang Y Z, Cao Z J, Liu S J, et al. Charge-enriched strategy based on MXene-based polypyrrole layers toward dendrite-free zinc metal anodes [J]. Adv. Energy Mater., 2022, 12: 2103979
doi: 10.1002/aenm.v12.13
[12] Zhou J H, Xie M, Wu F, et al. Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous Zinc-Ion Batteries [J]. Adv. Mater., 2021, 33: 2101649
doi: 10.1002/adma.v33.33
[13] Zhang H, Li S, Xu L Q, et al. High-yield carbon dots interlayer for ultra-stable zinc batteries [J]. Adv. Energy Mater., 2022, 12: 2200665
doi: 10.1002/aenm.v12.26
[14] Lu L L, Liu L J, Yao S L, et al. Degradation behavior of pure zinc and Zn-xLi alloy in artificial urine [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 765
[14] 陆黎立, 刘丽君, 姚生莲 等. Zn及锌锂合金在人工尿液中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2021, 41: 765
doi: 10.11902/1005.4537.2020.205
[15] Zhou J H, Xie M, Wu F, et al. Encapsulation of metallic Zn in a hybrid MXene/graphene aerogel as a stable Zn anode for foldable Zn-Ion batteries [J]. Adv. Mater., 2022, 34: e2106897
[16] Xiao R, Cai Z, Zhan R M, et al. Localizing concentrated electrolyte in pore geometry for highly reversible aqueous Zn metal batteries [J]. Chem. Eng. J., 2021, 420: 129642
doi: 10.1016/j.cej.2021.129642
[17] Wang J D, Cai Z, Xiao R, et al. A chemically polished zinc metal electrode with a ridge-like structure for cycle-stable aqueous batteries [J]. ACS Appl. Mater. Interfaces, 2020, 12: 23028
doi: 10.1021/acsami.0c05661
[18] Li T C, Lim Y, Li X L, et al. A universal additive strategy to reshape electrolyte solvation structure toward reversible Zn storage (Adv. Energy Mater. 15/2022) [J]. Adv. Energy Mater., 2022, 12: 2270060
doi: 10.1002/aenm.v12.15
[19] Wu H T, Zhang T S, Li G F, et al. Corrosion inhibitor for Zn anode of neutral aqueous zinc ion batteries [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1089
[19] 吴浩天, 张天遂, 李广芳 等. 中性水系锌离子电池负极缓蚀剂研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 1089
doi: 10.11902/1005.4537.2023.361
[20] Cao J, Zhang D D, Zhang X Y, et al. Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries [J]. Energy Environ. Sci., 2022, 15: 499
doi: 10.1039/D1EE03377H
[21] Wang J, Ning P D, Liu Q Q, et al. Corrosion behavior of galvanized steel in a simulated marine atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 578
[21] 王 瑾, 宁培栋, 刘倩倩 等. 模拟海洋大气环境中镀锌钢的腐蚀行为和机理 [J]. 中国腐蚀与防护学报, 2023, 43: 578
[22] Dai Y H, Zhang C Y, Zhang W, et al. Reversible Zn metal anodes enabled by trace amounts of underpotential deposition initiators [J]. Angew. Chem. Int. Ed., 2023, 62: e202301192
doi: 10.1002/anie.v62.18
[23] Wang N Z, Chen X, Wan H Z, et al. Zincophobic electrolyte achieves highly reversible zinc-ion batteries [J]. Adv. Funct. Mater., 2023, 33: 2300795
doi: 10.1002/adfm.v33.27
[24] Wang G Y, Zhang Q K, Zhang X Q, et al. Electrolyte additive for interfacial engineering of lithium and zinc metal anodes [J]. Adv. Energy Mater., 2025, 15: 2304557
doi: 10.1002/aenm.v15.2
[25] Zhang R X, Cui Y X, Liu L L, et al. A dual-functional rare earth halide additive for high-performance aqueous zinc ion batteries [J]. J. Power Sources, 2024, 602: 234351
doi: 10.1016/j.jpowsour.2024.234351
[26] Xin T, Zhou R K, Xu Q J, et al. 15-Crown-5 ether as efficient electrolyte additive for performance enhancement of aqueous Zn-ion batteries [J]. Chem. Eng. J., 2023, 452: 139572
doi: 10.1016/j.cej.2022.139572
[27] Zhao L, Zhang Y H, Li Y T, et al. A zwitterionic-type multifunctional electrolyte additive of trigonelline hydrochloride stabilizes zinc anodes for advanced aqueous zinc-ion batteries [J]. J. Energy Storage, 2024, 97: 112834
doi: 10.1016/j.est.2024.112834
[28] Xiao F Y, Wang X K, Sun K T, et al. Zincophilic armor: phytate ammonium as a multifunctional additive for enhanced performance in aqueous zinc-ion batteries [J]. Chem. Eng. J., 2024, 489: 151111
doi: 10.1016/j.cej.2024.151111
[29] Tu S B, Chen X, Zhao X X, et al. A polysulfide-immobilizing polymer retards the shuttling of polysulfide intermediates in lithium-sulfur batteries [J]. Adv. Mater., 2018, 30: 1804581
doi: 10.1002/adma.v30.45
[30] Singh G, Patyar P, Kaur T, et al. Volumetric behavior of glycine in aqueous succinic acid and sodium succinate buffer at different temperatures [J]. J. Mol. Liq., 2016, 222: 804
doi: 10.1016/j.molliq.2016.07.042
[31] Zhong Y, Cheng Z X, Zhang H W, et al. Monosodium glutamate, an effective electrolyte additive to enhance cycling performance of Zn anode in aqueous battery [J]. Nano Energy, 2022, 98: 107220
doi: 10.1016/j.nanoen.2022.107220
[32] Ji H J, Han Z Q, Lin Y H, et al. Stabilizing zinc anode for high-performance aqueous zinc ion batteries via employing a novel inositol additive [J]. J. Alloy. Compd., 2022, 914: 165231
doi: 10.1016/j.jallcom.2022.165231
[33] Li X, Zhang W W, Yu J, et al. Self-assembled protection layer induced by bifunctional additive for reversible aqueous zinc metal battery [J]. Adv. Funct. Mater., 2024, 34: 2316474
doi: 10.1002/adfm.v34.32
[34] Lyu H D, Zhao S W, Liao C Y, et al. Electric double layer oriented eutectic additive design toward stable Zn anodes with a high depth of discharge [J]. Adv. Mater., 2024, 36: 2400976
doi: 10.1002/adma.v36.29
[35] Yu H M, Chen D P, Ni X Y, et al. Reversible adsorption with oriented arrangement of a zwitterionic additive stabilizes electrodes for ultralong-life Zn-ion batteries [J]. Energy Environ. Sci., 2023, 16: 2684
doi: 10.1039/D3EE00982C
[36] Weng J Q, Zhu W Q, Yu K, et al. Enhancing Zn-Metal anode stability: Key effects of electrolyte additives on ion-shield-like electrical double layer and stable solid electrolyte interphase [J]. Adv. Funct. Mater., 2024, 34: 2314347
doi: 10.1002/adfm.v34.18
[37] Zhang S J, Hao J N, Luo D, et al. Dual-function electrolyte additive for highly reversible Zn anode [J]. Adv. Energy Mater., 2021, 11: 2102010
doi: 10.1002/aenm.v11.37
[38] Zheng J J, Zhang B, Chen X, et al. Critical solvation structures arrested active molecules for reversible Zn electrochemistry [J]. Nano-Micro Lett., 2024, 16: 145
doi: 10.1007/s40820-024-01361-0 pmid: 38441811
[39] Olbasa B W, Huang C J, Fenta F W, et al. Highly reversible Zn metal anode stabilized by dense and anion-derived passivation layer obtained from concentrated hybrid aqueous electrolyte [J]. Adv. Funct. Mater., 2022, 32: 2103959
doi: 10.1002/adfm.v32.7
[40] Lu H T, Zhang X L, Luo M H, et al. Amino acid-induced interface charge engineering enables highly reversible Zn anode [J]. Adv. Funct. Mater., 2021, 31: 2103514
doi: 10.1002/adfm.v31.45
[41] Zhang Z H, He Z R, Wang N, et al. Regulating the water molecular in the solvation structure for stable zinc metal batteries [J]. Adv. Funct. Mater., 2023, 33: 2214648
doi: 10.1002/adfm.v33.27
[42] Yuan D, Zhao J, Ren H, et al. Anion texturing towards dendrite‐free Zn anode for aqueous rechargeable batteries [J]. Angew. Chem. Int. Ed., 2021, 60: 7213
doi: 10.1002/anie.202015488 pmid: 33381887
[43] Zhang H, Guo R T, Li S, et al. Graphene quantum dots enable dendrite-free zinc ion battery [J]. Nano Energy, 2022, 92: 106752
doi: 10.1016/j.nanoen.2021.106752
[44] Feng D D, Cao F Q, Hou L, et al. Immunizing aqueous Zn Batteries against dendrite formation and side reactions at various temperatures via electrolyte additives [J]. Small, 2021, 17: 2103195
doi: 10.1002/smll.v17.42
[45] Cui C J, Han D L, Lu H T, et al. Breaking consecutive hydrogen-bond network toward high-rate hydrous organic zinc batteries [J]. Adv. Energy Mater., 2023, 13: 2301466
doi: 10.1002/aenm.v13.31
[1] 马晓, 徐雪磊, 仝宏韬, 王鑫, 赵铭钰, 王璇, 沈杰, 刘广义. 流动海水冲刷下B10铜镍合金海水调节阀腐蚀特性研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 283-290.
[2] 岳远广, 尹志彪, 张子月, 江社明, 张启富. 一种大气腐蚀实时监测装置的开发及其在不同环境中的应用[J]. 中国腐蚀与防护学报, 2026, 46(1): 308-314.
[3] 张泽群, 骆鑫杰, 刘鹏飞, 董凯, 卓先勤, 吴俊升, 张博威. TiC颗粒对激光粉末床熔融Al-Mg-Sc-Zr合金的微观结构与腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2026, 46(1): 92-102.
[4] 张德平, 闫立震, 于洋, 杨广明, 代春宇, 孟乐, 徐博, 刘智勇. CO2 驱采油井复杂环境中N80油管断裂失效机理[J]. 中国腐蚀与防护学报, 2025, 45(6): 1698-1708.
[5] 孙欣蕾, 曹京宜, 殷文昌, 方志刚, 王峰, 王兴奇, 杨延格. 高温高湿环境下玻璃纤维增强乙烯基酯复合材料的失效行为研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1679-1688.
[6] 孙士斌, 高浩, 常雪婷, 王东胜. 细晶FH40船用低温钢在海水-海冰中耦合失效行为研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1659-1668.
[7] 杨宝齐, 闫茂成, 史显波, 高博文. 新型耐微生物腐蚀油管钢的硫酸盐还原菌腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1755-1763.
[8] 李雨情, 张铁志, 黄兴林, 孙振美, 张怡, 尹衍升. 耐压海乳杆菌对2205双相不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1619-1626.
[9] 李科, 李天雷, 曹晓燕, 姜流, 王雅熙, 肖泽渝, 钟显康. 316L不锈钢焊接接头在含S-H2S环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(6): 1725-1733.
[10] 李伟华, 李中, 张丹妮, 徐大可. 微生物诱导矿化抑制金属腐蚀:机制、设计策略及展望[J]. 中国腐蚀与防护学报, 2025, 45(6): 1459-1473.
[11] 王萌萌 曹国民 孟繁兴 李天亮 宋沁峰 单太航 董亮. 混凝土配重层对近海海底钢质管道阴极保护效果的影响[J]. 中国腐蚀与防护学报, 0, (): 0-0.
[12] 赵欣宇, 刘恩泽, 张功, 赵媛, 宁礼奎, 信昕, 贾丹, 刘伟华, 谭政. 不同温度下DD10合金钎焊接头热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(5): 1361-1370.
[13] 王涛涛, 薛荣洁, 马晓伟, 万皓锋, 王冬朋, 刘珍光. 表面粗糙度以及NaOH溶液的浓度和温度对锆基非晶合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1253-1264.
[14] 冯宇芹, 郭同翰, 余韦汉, 吴伟, 张大全. Sb对高强结构钢在东海环境中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1300-1308.
[15] 夏大海, 潘成成, 郭玉杰, 胡文彬, TRIBOLLET Bernard. EIS研究7050铝合金在NaCl溶液空蚀作用下的界面状态与腐蚀机制[J]. 中国腐蚀与防护学报, 2025, 45(5): 1196-1204.