|
|
|
| 瓜氨酸/ZnSO4 电解液中锌电极的电化学行为研究 |
李彩霞, 张运何, 刘丽( ), 董立谨, 黄韵( ) |
| 西南石油大学新能源与材料学院 成都 610500 |
|
| Anti-corrosion Behavior and Electrochemical Performance of Zinc Electrodes in Citrulline/ZnSO4 Electrolyte |
LI Caixia, ZHANG Yunhe, LIU Li( ), DONG Lijin, HUANG Yun( ) |
| School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China |
引用本文:
李彩霞, 张运何, 刘丽, 董立谨, 黄韵. 瓜氨酸/ZnSO4 电解液中锌电极的电化学行为研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 241-251.
Caixia LI,
Yunhe ZHANG,
Li LIU,
Lijin DONG,
Yun HUANG.
Anti-corrosion Behavior and Electrochemical Performance of Zinc Electrodes in Citrulline/ZnSO4 Electrolyte[J]. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 241-251.
| [1] |
Qin R Z, Wang Y T, Yao L, et al. Progress in interface structure and modification of zinc anode for aqueous batteries [J]. Nano Energy, 2022, 98: 107333
doi: 10.1016/j.nanoen.2022.107333
|
| [2] |
Liang Y L, Dong H, Aurbach D, et al. Current status and future directions of multivalent metal-ion batteries [J]. Nat. Energy, 2020, 5: 646
doi: 10.1038/s41560-020-0655-0
|
| [3] |
Yu R, Zhang H L, Guo B L. Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering [J]. Nano-Micro Lett., 2022, 14: 1
|
| [4] |
Yue J S, Chen S, Yang J J, et al. Multi-ion engineering strategies toward high performance aqueous zinc-based batteries [J]. Adv. Mater., 2024, 36: 2304040
doi: 10.1002/adma.v36.2
|
| [5] |
Liu C X, Xie X S, Lu B G, et al. Electrolyte strategies toward better zinc-ion batteries [J]. ACS Energy Lett., 2021, 6: 1015
doi: 10.1021/acsenergylett.0c02684
|
| [6] |
Pan H L, Shao Y Y, Yan P F, et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions [J]. Nat. Energy, 2016, 1: 16039
doi: 10.1038/nenergy.2016.39
|
| [7] |
Huang S W, Hou L, Li T Y, et al. Antifreezing hydrogel electrolyte with ternary hydrogen bonding for high-performance zinc-ion batteries [J]. Adv. Mater., 2022, 34: 2110140
doi: 10.1002/adma.v34.14
|
| [8] |
Geng L S, Meng J S, Wang X P, et al. Eutectic electrolyte with unique solvation structure for high-performance zinc-ion batteries [J]. Angew. Chem. Int. Ed., 2022, 61: e202206717
doi: 10.1002/anie.v61.31
|
| [9] |
Song M, Tan H, Chao D L, et al. Recent advances in Zn‐Ion batteries [J]. Adv. Funct. Mater., 2018, 28: 1802564
doi: 10.1002/adfm.v28.41
|
| [10] |
Zheng W, Qu D Y, Sun Z H, et al. Research progress of zinc ion batteries in zinc metal electrodes and electrolytes [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 548
|
| [10] |
郑 微, 曲冬阳, 孙中辉 等. 锌离子电池的锌金属负极和电解液的研究进展 [J]. 中国腐蚀与防护学报, 2025, 45: 548
|
| [11] |
Zhang Y Z, Cao Z J, Liu S J, et al. Charge-enriched strategy based on MXene-based polypyrrole layers toward dendrite-free zinc metal anodes [J]. Adv. Energy Mater., 2022, 12: 2103979
doi: 10.1002/aenm.v12.13
|
| [12] |
Zhou J H, Xie M, Wu F, et al. Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous Zinc-Ion Batteries [J]. Adv. Mater., 2021, 33: 2101649
doi: 10.1002/adma.v33.33
|
| [13] |
Zhang H, Li S, Xu L Q, et al. High-yield carbon dots interlayer for ultra-stable zinc batteries [J]. Adv. Energy Mater., 2022, 12: 2200665
doi: 10.1002/aenm.v12.26
|
| [14] |
Lu L L, Liu L J, Yao S L, et al. Degradation behavior of pure zinc and Zn-xLi alloy in artificial urine [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 765
|
| [14] |
陆黎立, 刘丽君, 姚生莲 等. Zn及锌锂合金在人工尿液中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2021, 41: 765
doi: 10.11902/1005.4537.2020.205
|
| [15] |
Zhou J H, Xie M, Wu F, et al. Encapsulation of metallic Zn in a hybrid MXene/graphene aerogel as a stable Zn anode for foldable Zn-Ion batteries [J]. Adv. Mater., 2022, 34: e2106897
|
| [16] |
Xiao R, Cai Z, Zhan R M, et al. Localizing concentrated electrolyte in pore geometry for highly reversible aqueous Zn metal batteries [J]. Chem. Eng. J., 2021, 420: 129642
doi: 10.1016/j.cej.2021.129642
|
| [17] |
Wang J D, Cai Z, Xiao R, et al. A chemically polished zinc metal electrode with a ridge-like structure for cycle-stable aqueous batteries [J]. ACS Appl. Mater. Interfaces, 2020, 12: 23028
doi: 10.1021/acsami.0c05661
|
| [18] |
Li T C, Lim Y, Li X L, et al. A universal additive strategy to reshape electrolyte solvation structure toward reversible Zn storage (Adv. Energy Mater. 15/2022) [J]. Adv. Energy Mater., 2022, 12: 2270060
doi: 10.1002/aenm.v12.15
|
| [19] |
Wu H T, Zhang T S, Li G F, et al. Corrosion inhibitor for Zn anode of neutral aqueous zinc ion batteries [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1089
|
| [19] |
吴浩天, 张天遂, 李广芳 等. 中性水系锌离子电池负极缓蚀剂研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 1089
doi: 10.11902/1005.4537.2023.361
|
| [20] |
Cao J, Zhang D D, Zhang X Y, et al. Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries [J]. Energy Environ. Sci., 2022, 15: 499
doi: 10.1039/D1EE03377H
|
| [21] |
Wang J, Ning P D, Liu Q Q, et al. Corrosion behavior of galvanized steel in a simulated marine atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 578
|
| [21] |
王 瑾, 宁培栋, 刘倩倩 等. 模拟海洋大气环境中镀锌钢的腐蚀行为和机理 [J]. 中国腐蚀与防护学报, 2023, 43: 578
|
| [22] |
Dai Y H, Zhang C Y, Zhang W, et al. Reversible Zn metal anodes enabled by trace amounts of underpotential deposition initiators [J]. Angew. Chem. Int. Ed., 2023, 62: e202301192
doi: 10.1002/anie.v62.18
|
| [23] |
Wang N Z, Chen X, Wan H Z, et al. Zincophobic electrolyte achieves highly reversible zinc-ion batteries [J]. Adv. Funct. Mater., 2023, 33: 2300795
doi: 10.1002/adfm.v33.27
|
| [24] |
Wang G Y, Zhang Q K, Zhang X Q, et al. Electrolyte additive for interfacial engineering of lithium and zinc metal anodes [J]. Adv. Energy Mater., 2025, 15: 2304557
doi: 10.1002/aenm.v15.2
|
| [25] |
Zhang R X, Cui Y X, Liu L L, et al. A dual-functional rare earth halide additive for high-performance aqueous zinc ion batteries [J]. J. Power Sources, 2024, 602: 234351
doi: 10.1016/j.jpowsour.2024.234351
|
| [26] |
Xin T, Zhou R K, Xu Q J, et al. 15-Crown-5 ether as efficient electrolyte additive for performance enhancement of aqueous Zn-ion batteries [J]. Chem. Eng. J., 2023, 452: 139572
doi: 10.1016/j.cej.2022.139572
|
| [27] |
Zhao L, Zhang Y H, Li Y T, et al. A zwitterionic-type multifunctional electrolyte additive of trigonelline hydrochloride stabilizes zinc anodes for advanced aqueous zinc-ion batteries [J]. J. Energy Storage, 2024, 97: 112834
doi: 10.1016/j.est.2024.112834
|
| [28] |
Xiao F Y, Wang X K, Sun K T, et al. Zincophilic armor: phytate ammonium as a multifunctional additive for enhanced performance in aqueous zinc-ion batteries [J]. Chem. Eng. J., 2024, 489: 151111
doi: 10.1016/j.cej.2024.151111
|
| [29] |
Tu S B, Chen X, Zhao X X, et al. A polysulfide-immobilizing polymer retards the shuttling of polysulfide intermediates in lithium-sulfur batteries [J]. Adv. Mater., 2018, 30: 1804581
doi: 10.1002/adma.v30.45
|
| [30] |
Singh G, Patyar P, Kaur T, et al. Volumetric behavior of glycine in aqueous succinic acid and sodium succinate buffer at different temperatures [J]. J. Mol. Liq., 2016, 222: 804
doi: 10.1016/j.molliq.2016.07.042
|
| [31] |
Zhong Y, Cheng Z X, Zhang H W, et al. Monosodium glutamate, an effective electrolyte additive to enhance cycling performance of Zn anode in aqueous battery [J]. Nano Energy, 2022, 98: 107220
doi: 10.1016/j.nanoen.2022.107220
|
| [32] |
Ji H J, Han Z Q, Lin Y H, et al. Stabilizing zinc anode for high-performance aqueous zinc ion batteries via employing a novel inositol additive [J]. J. Alloy. Compd., 2022, 914: 165231
doi: 10.1016/j.jallcom.2022.165231
|
| [33] |
Li X, Zhang W W, Yu J, et al. Self-assembled protection layer induced by bifunctional additive for reversible aqueous zinc metal battery [J]. Adv. Funct. Mater., 2024, 34: 2316474
doi: 10.1002/adfm.v34.32
|
| [34] |
Lyu H D, Zhao S W, Liao C Y, et al. Electric double layer oriented eutectic additive design toward stable Zn anodes with a high depth of discharge [J]. Adv. Mater., 2024, 36: 2400976
doi: 10.1002/adma.v36.29
|
| [35] |
Yu H M, Chen D P, Ni X Y, et al. Reversible adsorption with oriented arrangement of a zwitterionic additive stabilizes electrodes for ultralong-life Zn-ion batteries [J]. Energy Environ. Sci., 2023, 16: 2684
doi: 10.1039/D3EE00982C
|
| [36] |
Weng J Q, Zhu W Q, Yu K, et al. Enhancing Zn-Metal anode stability: Key effects of electrolyte additives on ion-shield-like electrical double layer and stable solid electrolyte interphase [J]. Adv. Funct. Mater., 2024, 34: 2314347
doi: 10.1002/adfm.v34.18
|
| [37] |
Zhang S J, Hao J N, Luo D, et al. Dual-function electrolyte additive for highly reversible Zn anode [J]. Adv. Energy Mater., 2021, 11: 2102010
doi: 10.1002/aenm.v11.37
|
| [38] |
Zheng J J, Zhang B, Chen X, et al. Critical solvation structures arrested active molecules for reversible Zn electrochemistry [J]. Nano-Micro Lett., 2024, 16: 145
doi: 10.1007/s40820-024-01361-0
pmid: 38441811
|
| [39] |
Olbasa B W, Huang C J, Fenta F W, et al. Highly reversible Zn metal anode stabilized by dense and anion-derived passivation layer obtained from concentrated hybrid aqueous electrolyte [J]. Adv. Funct. Mater., 2022, 32: 2103959
doi: 10.1002/adfm.v32.7
|
| [40] |
Lu H T, Zhang X L, Luo M H, et al. Amino acid-induced interface charge engineering enables highly reversible Zn anode [J]. Adv. Funct. Mater., 2021, 31: 2103514
doi: 10.1002/adfm.v31.45
|
| [41] |
Zhang Z H, He Z R, Wang N, et al. Regulating the water molecular in the solvation structure for stable zinc metal batteries [J]. Adv. Funct. Mater., 2023, 33: 2214648
doi: 10.1002/adfm.v33.27
|
| [42] |
Yuan D, Zhao J, Ren H, et al. Anion texturing towards dendrite‐free Zn anode for aqueous rechargeable batteries [J]. Angew. Chem. Int. Ed., 2021, 60: 7213
doi: 10.1002/anie.202015488
pmid: 33381887
|
| [43] |
Zhang H, Guo R T, Li S, et al. Graphene quantum dots enable dendrite-free zinc ion battery [J]. Nano Energy, 2022, 92: 106752
doi: 10.1016/j.nanoen.2021.106752
|
| [44] |
Feng D D, Cao F Q, Hou L, et al. Immunizing aqueous Zn Batteries against dendrite formation and side reactions at various temperatures via electrolyte additives [J]. Small, 2021, 17: 2103195
doi: 10.1002/smll.v17.42
|
| [45] |
Cui C J, Han D L, Lu H T, et al. Breaking consecutive hydrogen-bond network toward high-rate hydrous organic zinc batteries [J]. Adv. Energy Mater., 2023, 13: 2301466
doi: 10.1002/aenm.v13.31
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|