Please wait a minute...
中国腐蚀与防护学报  2026, Vol. 46 Issue (1): 92-102     CSTR: 32134.14.1005.4537.2025.269      DOI: 10.11902/1005.4537.2025.269
  增材制造与腐蚀专题 本期目录 | 过刊浏览 |
TiC颗粒对激光粉末床熔融Al-Mg-Sc-Zr合金的微观结构与腐蚀行为的影响
张泽群1, 骆鑫杰1, 刘鹏飞2, 董凯3, 卓先勤4, 吴俊升1, 张博威1()
1.北京科技大学新材料技术研究院 北京 100083
2.新疆众和股份有限公司 新疆 830000
3.石河子众金电极箔有限公司 石河子 832000
4.海南国际商业航天发射有限公司 文昌 571300
Influence of TiC Particles on Microstructure and Corrosion Performance of Laser Powder Bed Fusion Al-Mg-Sc-Zr Alloy
ZHANG Zequn1, LUO Xinjie1, LIU Pengfei2, DONG Kai3, ZHUO Xianqin4, WU Junsheng1, ZHANG Bowei1()
1.Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2.Xinjiang Joinworld Co. Ltd., Xinjiang 830000, China
3.Shihezi Zhongjin Electrode Foil Co. Ltd., Shihezi 832000, China
4.Hainan International Commercial Space Launch Co. Ltd., Wenchang 571300, China
引用本文:

张泽群, 骆鑫杰, 刘鹏飞, 董凯, 卓先勤, 吴俊升, 张博威. TiC颗粒对激光粉末床熔融Al-Mg-Sc-Zr合金的微观结构与腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2026, 46(1): 92-102.
Zequn ZHANG, Xinjie LUO, Pengfei LIU, Kai DONG, Xianqin ZHUO, Junsheng WU, Bowei ZHANG. Influence of TiC Particles on Microstructure and Corrosion Performance of Laser Powder Bed Fusion Al-Mg-Sc-Zr Alloy[J]. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 92-102.

全文: PDF(37872 KB)   HTML
摘要: 

采用激光粉末床熔融(LPBF)工艺制备了纳米TiC颗粒改性Al-Mg-Sc-Zr合金,并对其晶粒组织、析出相等进行微观结构的表征,又结合常温浸泡、慢应变速率拉伸等腐蚀实验探究了TiC颗粒对LPBF制备的Al-Mg-Sc-Zr合金的微观结构与腐蚀行为的影响。结果表明:纳米TiC颗粒的添加导致大量的纳米Al3(Ti, Sc, Zr)相产生,令LPBF制备的Al-Mg-Sc-Zr合金中柱状等轴双峰晶粒分布向全等轴晶粒的转变,这种精细的晶粒结构使得合金展现了优异的耐蚀性能及抗应力腐蚀性能。LPBF制备的TiC改性Al-Mg-Sc-Zr合金中的熔池边界及由于团聚形成的微米级TiC颗粒引发了合金的局部腐蚀,而这些易腐蚀的区域也成为了应力腐蚀开裂的选择性萌生及扩展的位置。

关键词 激光粉末床熔融TiC颗粒Al-Mg-Sc-Zr合金局部腐蚀应力腐蚀    
Abstract

TiC nanoparticle modified Al-Mg-Sc-Zr alloy was fabricated via laser powder bed fusion (LPBF) technique. The microstructure and corrosion behavior of the as-fabricated alloy were systematically investigated through microstructural analysis of grain structures and precipitates combined with corrosion evaluations, including room-temperature immersion in 3.5% (mass fraction) NaCl solution and slow strain rate tensile tests both in air and 3.5%NaCl solution. The results indicate that the addition of TiC nanoparticle promotes the formation of abundant Al3(Ti, Sc, Zr) precipitates of nano-size, which induces the transition from columnar-equiaxed bimodal grain distribution to fully equiaxed grains in LPBF-fabricated alloy. This refined grain structure significantly improvethe corrosion resistance and stress corrosion cracking (SCC) resistance. Furthermore, the molten pool boundaries and micron-sized TiC particles formed by the agglomeration of nano-particle serve as the preferential sites for localized corrosion, which also act as the preferential initiation and propagation regions for stress corrosion cracks.

Key wordslaser powder bed fusion (LPBF)    TiC particle    Al-Mg-Sc-Zr alloy    localized corrosion    stress corrosion
收稿日期: 2025-08-27      32134.14.1005.4537.2025.269
ZTFLH:  TG172  
基金资助:海南省自然科学基金(425QY913);新疆人才发展基金-石河子众金电极箔有限公司热压箔研发团队建设项目
通讯作者: 张博威,E-mail:bwzhang@ustb.edu.cn,研究方向为增材制造耐蚀合金的设计及耐蚀机理
作者简介: 张泽群,男,1997年生,博士生
张博威,北京科技大学教授。博士毕业于新加坡南洋理工大学。长期开展材料微观腐蚀机理和数据驱动高品质耐蚀合金研发等方面的研究;入选中国科协“青年人才托举工程”“北科青年学者”,获“中国腐蚀与防护学会杰出青年学术成就奖”、“中国有色金属工业科学技术二等奖”1 项、“中国冶金科学技术二等奖”1项、“中国腐蚀与防护学会科学技术一等奖”1 项。担任北京科技大学国际合作与交流处副处长、中国腐蚀与防护学会国际合作部主任、“国家材料腐蚀与防护科学数据中心”京津冀分中心副主任、CSTM-FC92金属材料腐蚀与防护领域委员会秘书长、欧洲腐蚀联合会青年工作委员会(Young EFC)委员,Int. J. Min.Met. Mater 学科编辑及Rare Metals、Corrosion Communications、《中国腐蚀与防护学报》等期刊青年编委等。先后主持了国家自然科学基金面上项目、青年项目等国家级科研项目,参与了国家重点研发计划、国家基础资源调查专项等多个国家及省部级科研项目。以第一/通讯作者在Advanced Materials、Advanced Functional Materials、Corrosion Science 等高水平期刊上发表论文50 余篇,合作SCI论文60余篇。
图1  LPBF TiC改性Al-Mg-Sc-Zr合金的微观结构
图2  TiC改性前后LPBF Al-Mg-Sc-Zr合金XZ平面侵蚀后的形貌
图3  TiC改性前后LPBF Al-Mg-Sc-Zr合金XZ平面EBSD结果
图4  LPBF TiC改性Al-Mg-Sc-Zr合金的TEM结果
图5  LPBF TiC改性Al-Mg-Sc-Zr合金浸泡实验后的腐蚀形貌
图6  浸泡实验后微米级TiC颗粒的SEM形貌及FIB结果
图7  微米级TiC颗粒的SKPFM结果
图8  LPBF TiC改性Al-Mg-Sc-Zr合金的腐蚀行为示意图
图9  LPBF TiC改性Al-Mg-Sc-Zr合金的拉伸应力-应变曲线
图10  Al-Mg-Sc-Zr合金在干燥空气及3.5%NaCl溶液中的SSRT断口SEM形貌及EDS结果
图11  Al-Mg-Sc-Zr合金在干燥空气及3.5%NaCl溶液中的SSRT断口侧边SEM形貌
[1] Conner B P, Manogharan G P, Martof A N, et al. Making sense of 3-D printing: Creating a map of additive manufacturing products and services [J]. Addit. Manuf., 2014, 1-4: 64
[2] Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals [J]. Acta Mater., 2016, 117: 371
doi: 10.1016/j.actamat.2016.07.019
[3] Gong G H, Ye J J, Chi Y M, et al. Research status of laser additive manufacturing for metal: A review [J]. J. Mater. Res. Technol., 2021, 15: 855
doi: 10.1016/j.jmrt.2021.08.050
[4] Olakanmi E O, Cochrane R F, Dalgarno K W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties [J]. Prog. Mater. Sci., 2015, 74: 401
doi: 10.1016/j.pmatsci.2015.03.002
[5] Song X W, Bai M M, Chen N N, et al. Effect of aspergillus aculeatus on corrosion behavior of 5A02 Al-alloy in coastal atmospheric environment of Hainan island [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 631
[5] 宋晓稳, 白苗苗, 陈娜娜 等. 海南滨海大气环境中棘孢曲霉对铝合金腐蚀行为影响 [J]. 中国腐蚀与防护学报, 2025, 45: 631
doi: 10.11902/1005.4537.2024.191
[6] Hamza H M, Deen K M, Khaliq A, et al. Microstructural, corrosion and mechanical properties of additively manufactured alloys: A review [J]. Crit. Rev. Solid State Mater. Sci., 2022, 47: 46
doi: 10.1080/10408436.2021.1886044
[7] Aboulkhair N T, Simonelli M, Parry L, et al. 3D printing of Aluminium alloys: Additive manufacturing of Aluminium alloys using selective laser melting [J]. Prog. Mater. Sci., 2019, 106: 100578
doi: 10.1016/j.pmatsci.2019.100578
[8] Zhang J L, Song B, Wei Q S, et al. A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends [J]. J. Mater. Sci. Technol., 2019, 35: 270
doi: 10.1016/j.jmst.2018.09.004
[9] Galy C, Le Guen E, Lacoste E, et al. Main defects observed in aluminum alloy parts produced by SLM: From causes to consequences [J]. Addit. Manuf., 2018, 22: 165
[10] Li N, Wang T, Zhang L X, et al. Coupling effects of SiC and TiB2 particles on crack inhibition in Al-Zn-Mg-Cu alloy produced by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2023, 164: 37
doi: 10.1016/j.jmst.2023.04.022
[11] Liu X H, Liu Y Z, Zhou Z G, et al. Enhanced strength and ductility in Al-Zn-Mg-Cu alloys fabricated by laser powder bed fusion using a synergistic grain-refining strategy [J]. J. Mater. Sci. Technol., 2022, 124: 41
doi: 10.1016/j.jmst.2021.12.078
[12] Ma R L, Peng C Q, Cai Z Y, et al. Effect of bimodal microstructure on the tensile properties of selective laser melt Al-Mg-Sc-Zr alloy [J]. J. Alloy. Compd., 2020, 815: 152422
doi: 10.1016/j.jallcom.2019.152422
[13] Li R D, Wang M B, Yuan T C, et al. Selective laser melting of a novel Sc and Zr modified Al-6.2Mg alloy: Processing, microstructure, and properties [J]. Powder Technol., 2017, 319: 117
doi: 10.1016/j.powtec.2017.06.050
[14] Zhu Z G, Ng F L, Seet H L, et al. Superior mechanical properties of a selective-laser-melted AlZnMgCuScZr alloy enabled by a tunable hierarchical microstructure and dual-nanoprecipitation [J]. Mater. Today, 2022, 52: 90
doi: 10.1016/j.mattod.2021.11.019
[15] Bi J, Lei Z L, Chen Y B, et al. An additively manufactured Al-14.1Mg-0.47Si-0.31Sc-0.17Zr alloy with high specific strength, good thermal stability and excellent corrosion resistance [J]. J. Mater. Sci. Technol., 2021, 67: 23
doi: 10.1016/j.jmst.2020.06.036
[16] Cheng Z Y. Study on selective laser melting of high-strength Al-Mg-Sc-Zr aluminum alloy [D]. Beijing: China Academy of Engineering Physics, 2020
[16] 程志瑶. Al-Mg-Sc-Zr高强铝合金选区激光熔融工艺研究 [D]. 北京: 中国工程物理研究院, 2020
[17] Karabulut Y, Ünal R. Additive manufacturing of ceramic particle-reinforced aluminum-based metal matrix composites: A review [J]. J. Mater. Sci., 2022, 57: 19212
doi: 10.1007/s10853-022-07850-0
[18] Tang H, Xi X Y, Gao C F, et al. Microstructure evolution and strengthening mechanisms of a high-performance TiN-reinforced Al-Mn-Mg-Sc-Zr alloy processed by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2024, 187: 86
doi: 10.1016/j.jmst.2023.11.033
[19] Meng C Y. Corrosion mechanism and development of the Zn-containing 5xxx series Al alloy for shipbuilding industry [D]. Beijing: University of Science and Technology Beijing, 2016
[19] 孟春艳. 舰船用含Zn5xxx系铝合金的抗腐蚀机理及板材开发 [D]. 北京: 北京科技大学, 2016
[20] Wang M Y, Xia D H. Research progress on hydrogen embrittlement mechanism of high strength Al-alloy [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 261
[20] 王明洋, 夏大海. 高强铝合金氢脆机理研究进展 [J]. 中国腐蚀与防护学报, 2025, 45: 261
doi: 10.11902/1005.4537.2024.238
[21] Chen H W, Zhang C Q, Jia D, et al. Corrosion behaviors of selective laser melted aluminum alloys: A review [J]. Metals, 2020, 10: 102
doi: 10.3390/met10010102
[22] Gu D D, Zhang H, Dai D H, et al. Anisotropic corrosion behavior of Sc and Zr modified Al-Mg alloy produced by selective laser melting [J]. Corros. Sci., 2020, 170: 108657
doi: 10.1016/j.corsci.2020.108657
[23] Zhang Z Q, Sun J, Xia J Y, et al. Anisotropic response in corrosion behavior of laser powder bed fusion Al-Mn-Mg-Sc-Zr alloy [J]. Corros. Sci., 2022, 208: 110634
doi: 10.1016/j.corsci.2022.110634
[24] Tan Q Y, Zhang M X. Recent advances in inoculation treatment for powder-based additive manufacturing of aluminium alloys [J]. Mater. Sci. Eng., 2024, 158R: 100773
[25] Xi L X, Feng L L, Gu D D, et al. ZrC + TiC synergically reinforced metal matrix composites with micro/nanoscale reinforcements prepared by laser powder bed fusion [J]. J. Mater. Res. Technol., 2022, 19: 4645
doi: 10.1016/j.jmrt.2022.06.149
[26] Zhang X, Zhou X, Hashimoto T, et al. The influence of grain structure on the corrosion behaviour of 2A97-T3 Al-Cu-Li alloy [J]. Corros. Sci., 2017, 116: 14
doi: 10.1016/j.corsci.2016.12.005
[27] Kong D C, Dong C F, Ni X Q, et al. Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes [J]. J. Mater. Sci. Technol., 2019, 35: 1499
doi: 10.1016/j.jmst.2019.03.003
[28] Li J, Nie J F, Xu Q F, et al. Enhanced mechanical properties of a novel heat resistant Al-based composite reinforced by the combination of nano-aluminides and submicron TiN particles [J]. Mater. Sci. Eng., 2020, 770A: 138488
[29] Zhang H, Gu D D, Dai D H, et al. Influence of scanning strategy and parameter on microstructural feature, residual stress and performance of Sc and Zr modified Al-Mg alloy produced by selective laser melting [J]. Mater. Sci. Eng., 2020, 788A: 139593
[30] Chen H, Lu L, Huang Y H, et al. Insight into TiN inclusion induced pit corrosion of interstitial free steel exposed to aerated NaCl solution [J]. J. Mater. Res. Technol., 2021, 13: 13
doi: 10.1016/j.jmrt.2021.04.046
[31] Li R D, Chen H, Zhu H B, et al. Effect of aging treatment on the microstructure and mechanical properties of Al-3.02Mg-0.2Sc-0.1Zr alloy printed by selective laser melting [J]. Mater. Des., 2019, 168: 107668
doi: 10.1016/j.matdes.2019.107668
[32] Zhang H, Gu D D, Yang J K, et al. Selective laser melting of rare earth element Sc modified aluminum alloy: Thermodynamics of precipitation behavior and its influence on mechanical properties [J]. Addit. Manuf., 2018, 23: 1
[1] 兰博韬, 吴斌, 明洪亮, 王俭秋, 韩恩厚. 选区激光熔化奥氏体不锈钢高温高压水中应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2026, 46(1): 1-14.
[2] 戴念维, 窦欣懿, 刘华剑, 冷滨. 增材制造合金在核能领域应用中的腐蚀研究进展[J]. 中国腐蚀与防护学报, 2026, 46(1): 15-24.
[3] 周小包, 王子腾, 任延杰, 董少阳, 甘浪, 李聪. 激光粉末床熔融成形CoCrNi中熵合金的高温热腐蚀行为[J]. 中国腐蚀与防护学报, 2026, 46(1): 115-125.
[4] 王立芳, 商孟超, 高希钰, 刘贵昌, 孙文. B30铜镍合金原始膜对其腐蚀的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1575-1588.
[5] 张德平, 闫立震, 于洋, 杨广明, 代春宇, 孟乐, 徐博, 刘智勇. CO2 驱采油井复杂环境中N80油管断裂失效机理[J]. 中国腐蚀与防护学报, 2025, 45(6): 1698-1708.
[6] 李科, 李天雷, 曹晓燕, 姜流, 王雅熙, 肖泽渝, 钟显康. 316L不锈钢焊接接头在含S-H2S环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(6): 1725-1733.
[7] 程璐瑶, 徐彦磊, 李家玮, 孙冲, 林学强, 孙建波. CO2 压力对含杂质超临界CO2 输送管线X65钢应力腐蚀开裂敏感性的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1351-1360.
[8] 李维鹏, 罗坤杰, 王惠生, 陈嘉诚, 韩姚磊, 庞晓露, 彭群家, 乔利杰. 沉淀相对镍基718合金高温高压水环境应力腐蚀裂纹萌生行为影响研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 947-955.
[9] 麻衡, 王中学, 逄昆, 张庆普, 崔中雨. 低合金钢中腐蚀活性夹杂物诱发局部腐蚀萌生行为研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 1005-1013.
[10] 张国庆, 余直霞, 王岳松, 王智, 金正宇, 刘宏伟. 海上超临界二氧化碳环境中含水率和温度对A106钢腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 1061-1069.
[11] 吴宇航, 陈旭, 王首德, 刘畅, 刘杰. 直流电作用下X70钢在近中性土壤中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 489-496.
[12] 李开洋, 吴悠, 张冠霖, 张乃强. 高温超临界CO2 结构材料环境致裂研究进展[J]. 中国腐蚀与防护学报, 2025, 45(1): 61-68.
[13] 苏志诚, 张弦, 程焱, 刘静, 吴开明. 同成分的超细贝氏体钢和Q&P钢在海水中应力腐蚀开裂行为对比研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1495-1506.
[14] 张颛利, 戴海龙, 张喆, 石守稳, 陈旭. HF溶液中316L应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1633-1640.
[15] 刘广胜, 王卫军, 周佩, 谭金颢, 丁宏鑫, 张伟, 向勇. 含杂CO2 封存条件下13CrN80套管钢腐蚀规律研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1200-1212.