Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (5): 1361-1370     CSTR: 32134.14.1005.4537.2024.400      DOI: 10.11902/1005.4537.2024.400
  研究报告 本期目录 | 过刊浏览 |
不同温度下DD10合金钎焊接头热腐蚀行为研究
赵欣宇1,2, 刘恩泽1(), 张功1, 赵媛3, 宁礼奎1, 信昕1, 贾丹1, 刘伟华1, 谭政1,2
1 中国科学院金属研究所 沈阳 110016
2 中国科学技术大学材料科学与工程学院 沈阳 110016
3 中国船舶工业物资东北有限公司 沈阳 110011
Hot Corrosion Behavior of Brazed Joints of Single Crystal Ni-based DD10 Alloy Beneath Na2SO4 Deposit in Air at 850 and 900 ℃
ZHAO Xinyu1,2, LIU Enze1(), ZHANG Gong1, ZHAO Yuan3, NING Likui1, XIN Xin1, JIA Dan1, LIU Weihua1, TAN Zheng1,2
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 China Shipbuilding Equipment & Materials Northeast Corporation Limited, Shenyang 110011, China
引用本文:

赵欣宇, 刘恩泽, 张功, 赵媛, 宁礼奎, 信昕, 贾丹, 刘伟华, 谭政. 不同温度下DD10合金钎焊接头热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(5): 1361-1370.
Xinyu ZHAO, Enze LIU, Gong ZHANG, Yuan ZHAO, Likui NING, Xin XIN, Dan JIA, Weihua LIU, Zheng TAN. Hot Corrosion Behavior of Brazed Joints of Single Crystal Ni-based DD10 Alloy Beneath Na2SO4 Deposit in Air at 850 and 900 ℃[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1361-1370.

全文: PDF(27261 KB)   HTML
摘要: 

采用涂盐法研究DD10合金钎焊接头在850和900 ℃下的抗热腐蚀行为,并探讨其腐蚀机理。结果表明:在850 ℃/200 h腐蚀后,DD10合金和钎焊接头的腐蚀层厚度分别为12和14 μm,二者的抗腐蚀性能相差不大;900 ℃/200 h腐蚀后,合金和钎焊接头的腐蚀层厚度分别为28和44 μm,腐蚀机理发生改变,钎焊接头抗热腐蚀性能劣于基体。850和900 ℃的腐蚀产物均主要由金属氧化物、尖晶石相以及硫化物构成,900 ℃的腐蚀产物出现850 ℃未含有的CrTaO4、(Ni, Co)Co2O4、Ni3S2。在焊接过程中焊缝区域形成的析出相会消耗抗腐蚀元素,增大相界面,降低钎焊接头的抗热腐蚀性能。

关键词 单晶高温合金DD10合金热腐蚀钎焊析出相    
Abstract

The hot corrosion behavior of brazed joints of single crystal Ni-based DD10 alloy beneath Na2SO4 deposits in air at 850 and 900 ℃ was studied. The results indicate that after 200 h exposure at 850 ℃, the corrosion layer thickness of the DD10 alloy and the brazed joint was 12 and 14 μm, respectively, demonstrating their similar corrosion resistance. However, after 200 h exposure at 900 ℃, the corrosion layer thickness increased to 28 μm for the master alloy and 44 μm for the brazed joint, indicating a change in the corrosion mechanism, with the brazed joint exhibiting inferior hot corrosion resistance compared to the master alloy. The corrosion products at both temperatures consist mainly of metal oxides, spinel phases, and sulfides. Notably, at 900 ℃, additional corrosion products, including CrTaO4, (Ni, Co)Co2O4, and Ni3S2, were identified, which were absent at 850 ℃. During the welding process, the precipitated phases in the weld zone consume corrosion-resistant elements, increase the phase boundaries, and consequently reduce the hot corrosion resistance of the brazed joint.

Key wordssingle crystal superalloy    DD10 alloy    hot corrosion    brazing    precipitation phase
收稿日期: 2024-12-20      32134.14.1005.4537.2024.400
ZTFLH:  TG172  
基金资助:国家科技重大专项(E110A104)
通讯作者: 刘恩泽,E-mail:nzliu@imr.ac.cn,研究方向为高温结构材料
Corresponding author: LIU Enze, E-mail: nzliu@imr.ac.cn
作者简介: 赵欣宇,男,1999年生,硕士生
图1  DD10合金组织与钎焊后焊缝局部区域的微观组织
PositionNiCoCrTiAlWTaMoCB
A3.391.9226.573.97-22.821.872.790.2036.48
B4.263.5538.552.53-13.060.811.970.1235.17
C2.543.8854.700.68-3.05-0.86-34.30
D58.7415.934.7411.583.031.193.580.090.850.28
E2.993.8752.890.84-3.620.120.85-34.81
F2.281.121.0827.82-4.9516.600.0246.12-
G51.1715.4918.802.996.171.970.780.250.771.43
表1  图1b中各标记点处EPMA成分分析结果
图2  DD10合金及钎焊接头在850和900 ℃下200 h热腐蚀后的宏观形貌
图3  DD10合金和钎焊接头在850 ℃下200 h热腐蚀的动力学曲线
图4  DD10合金和钎焊接头在900 ℃下200 h热腐蚀的动力学曲线
图5  DD10合金和钎焊接头850 ℃下200 h热腐蚀后的XRD谱图
图6  DD10合金在850 ℃下200 h热腐蚀后的截面SEM形貌及EDS元素面扫描
图7  DD10钎焊接头在850 ℃下200 h热腐蚀后的截面SEM形貌及EDS元素面扫描
图8  DD10合金和钎焊试样在900 ℃下200 h热腐蚀后的XRD谱图
图9  DD10合金在900 ℃下200 h热腐蚀后的截面SEM形貌及EDS元素面扫描图
图10  DD10钎焊接头在900 ℃下200 h热腐蚀后的截面SEM形貌及EDS元素面扫描图
ReactionΔG850 oC / kJ·mol-1
8/3Al + 2O2 (g) = 4/3Al2O3-1760.877
2Ti + 2O2 (g) = 2TiO2-1481.985
8/3Cr + 2O2 (g) = 4/3Cr2O3-1126.937
8/3Al + Na2SO4 (s) = 4/3Al2O3 + Na2S (l)-1113.022
2Ti + Na2SO4 (s) = 2TiO2 + Na2S (l)-834.130
8/3Cr + Na2SO4 (s) = 4/3Cr2O3 + Na2S (l)-479.081
6TiO2 + Na2SO4 (s) = Na2Ti6O13 + SO3 (g)140.699
Cr2O3 + Na2SO4 (s) = Na2Cr2O4 + SO3 (g)317.719
Al2O3 + Na2SO4 (s) = 2NaAlO2 + SO3 (g)326.557
表2  850 ℃下Ti、Cr和Al与O及固态Na2SO4反应的标准Gibbs自由能
[1] Li T F. High Temperature Oxidation and Hot Corrosion of Metals [M]. Beijing: Chemical Industry Press, 2003: 257
[1] 李铁藩. 金属高温氧化和热腐蚀 [M]. 北京: 化学工业出版社, 2003: 257
[2] Yu Z F. Corrosion behavior of Ni-based superalloy at high temperature corrosion interaction with low temperature corrosion [D]. Shenyang: Northeastern University, 2014
[2] 余钟芬. 高低温交互作用下镍基高温合金腐蚀行为的研究 [D]. 沈阳: 东北大学, 2014
[3] Guo J T. The current situation of application and development of superalloys in the fields of energy industry [J]. Acta Metall. Sin., 2010, 46: 513
[3] 郭建亭. 高温合金在能源工业领域中的应用现状与发展 [J]. 金属学报, 2010, 46: 513
doi: 10.3724/SP.J.1037.2009.00860
[4] Ren W P, Li Q, Li X H, et al. Hot corrosion resistance of direct solidified Ni-based superalloy DZ466 and its thermal barrier coating [J]. Heat Treat. Met., 2018, 43: 213
[4] 任维鹏, 李 青, 李相辉 等. 定向镍基高温合金DZ466及其热障涂层的抗热腐蚀性能 [J]. 金属热处理, 2018, 43: 213
[5] Yu Z H, Liu B L, Wang P H, et al. Research progress on the influence of hot corrosion on mechanical properties of superalloys and protective measures [J]. Foundry, 2019, 68: 550
[5] 余竹焕, 刘蓓蕾, 王盼航 等. 热腐蚀对高温合金力学性能的影响以及防护措施的研究进展 [J]. 铸造, 2019, 68: 550
[6] Guan X R, Wei J, Liu E Z, et al. Effect of Ti content on hot corrosion resistance of Nickel-base superalloy [J]. Rare Met. Mater. Eng., 2012, 41: 1990
[6] 管秀荣, 魏 健, 刘恩泽 等. Ti含量对镍基高温合金抗热腐蚀性能的影响 [J]. 稀有金属材料与工程, 2012, 41: 1990
[7] Zhao D Z. Hot corrosion and protection of gas turbine blade in marine environment [J]. Equip. Environ. Eng., 2011, 8(5): 100
[7] 赵德孜. 海洋环境下燃气轮机涡轮叶片的热腐蚀与防护 [J]. 装备环境工程, 2011, 8(5): 100
[8] Liu C B. Microstructure and properties of hot corrosion resistant nickel base single crystal superalloy DD10 [D]. Shenyang: University of Chinese Academy of Sciences, 2010
[8] 刘成宝. 抗热腐蚀镍基单晶高温合金DD10组织与性能的研究 [D]. 沈阳: 中国科学院大学, 2010
[9] Liu C B, Li H, Lou L H. Isothermal oxidation behavior of single-crystal nickel-base superalloy DD10 [J]. Rare Met. Mater. Eng., 2010, 39: 1407
[9] 刘成宝, 李 辉, 楼琅洪. 镍基单晶高温合金DD10的恒温氧化行为 [J]. 稀有金属材料与工程, 2010, 39: 1407
[10] Li Y M, Liu H, Qiao Z, et al. Comparison on hot corrosion behaviors of Ni-base superalloy DD5, DD10 and DSM11 [J]. Chin. J. Nonferrous Met., 2020, 30: 2105
[10] 李艳明, 刘 欢, 乔 志 等. 镍基高温合金DD5、DD10和DSM11热腐蚀行为比较 [J]. 中国有色金属学报, 2020, 30: 2105
[11] Wu E D, Sun G G, Chen B, et al. A neutron diffraction study of lattice distortion, mismatch and misorientation in a single-crystal superalloy after different heat treatments [J]. Acta Mater., 2013, 61: 2308
[12] Fan Z D, Wang D, Lou L H. Corporate effects of temperature and strain range on the low cycle fatigue life of a single-crystal superalloy DD10 [J]. Acta Metall. Sin. (Engl. Lett.), 2015, 28: 152
[13] Fan Z D, Wang D, Liu C, et al. Low-cycle fatigue properties of nickel-based superalloys processed by high-gradient directional solidification [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 878
[14] Huang M, Zhang G, Wang D, et al. Microstructure and stress-rupture property of large-scale complex nickel-based single crystal casting [J]. Acta Metall. Sin. (Engl. Lett.), 2018, 31: 887
[15] Mo F J, Sun G G, Yang Z L, et al. Elastic tension induced lattice distortions in DD10 single crystal nickel-based superalloy at 500 ℃/760 MPa using in situ neutron diffraction [J]. Mater. Sci. Eng., 2019, 743A: 504
[16] Yu Z H, Wang P H, Zhang Y, et al. Research progress on factors affecting hot corrosion of superalloy [J]. Foundry Technol., 2018, 39: 226
[16] 余竹焕, 王盼航, 张 洋 等. 高温合金热腐蚀性能影响因素的研究进展 [J]. 铸造技术, 2018, 39: 226
[17] Wang L, Liu C Y, Han Z Y, et al. Hot corrosion behavior and evaluation of turbine components and materials used for gas turbine engine [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 399
[17] 王 理, 刘春阳, 韩振宇 等. 燃气轮机涡轮零部件及材料热腐蚀行为与评价方法研究 [J]. 中国腐蚀与防护学报, 2011, 31: 399
[18] Pei Y W, Zhou C G. Improved hot corrosion resistance of Dy-Co-modified aluminide coating by pack cementation process on nickel base superalloys [J]. Corros. Sci., 2016, 112: 710
[19] Fu C, Ren Z M, Cao G H. Preparation and structure of Al + Si codeposited coatings on Ni-based superalloys [J]. Rare Met. Mater. Eng., 2017, 46: 1612
[19] 付 超, 任忠鸣, 操光辉. Ni基高温合金表面Al + Si共渗涂层的制备及其结构 [J]. 稀有金属材料与工程, 2017, 46: 1612
[20] Mrowec S, Werber T, Zastawnik M. The mechanism of high temperature sulphur corrosion of nickel-chromium alloys [J]. Corros. Sci., 1966, 6: 47
[21] Yu Z F, Zheng Z, Liu E Z, et al. Hot corrosion behavior of Nickel-base superalloys DZ68 and K438G with low segregation [J]. J. Chin. Soc. Corros. Prot., 2008, 28: 277
[21] 于忠锋, 郑 志, 刘恩泽 等. 两种低偏析镍基高温合金抗热腐蚀性能的研究 [J]. 中国腐蚀与防护学报, 2008, 28: 277
[22] Ning L K. Investigation on the hot corrosion resistance of four Ni-based superalloys [D]. Dalian: Dalian University of Technology, 2009
[22] 宁礼奎. 四种镍基高温合金的抗热腐蚀性能研究 [D]. 大连: 大连理工大学, 2009
[23] Yuan W. Hot corrosion behaviour and high temperature tensile property of a second generation Ni-based single crystal superalloy [D]. Taiyuan: Taiyuan University of Science & Technology, 2023
[23] 袁 伟. 一种第二代镍基单晶高温合金的热腐蚀行为及高温拉伸性能研究 [D]. 太原: 太原科技大学, 2023
[24] Lu X D, Tian S G, Chen T, et al. Internal oxidation and internal sulfuration of Ni-base alloy with high Cr content during hot corrosion in molten sulfate [J]. Rare Met. Mater. Eng., 2014, 43: 79
[24] 卢旭东, 田素贵, 陈 涛 等. 高铬镍基合金熔融硫酸盐热腐蚀过程中内氧化和内硫化行为的研究 [J]. 稀有金属材料与工程, 2014, 43: 79
[25] Zhao S Q, Xie X S. Hot corrosion behaviors of new Ni-Cr-Co base superalloy [J]. Mater. Sci. Technol., 2006, 14: 506
[25] 赵双群, 谢锡善. 新型Ni-Cr-Co基高温合金的热腐蚀行为 [J]. 材料科学与工艺, 2006, 14: 506
[26] Fryburg G C, Kohl F J, Stearns C A, et al. Chemical reactions involved in the initiation of hot corrosion of B-1900 and NASA-TRW VIA [J]. J. Electrochem. Soc., 1982, 129: 571
[27] Huang Q Y, Li H K. High Temperature Alloys [M]. Beijing: Metallurgical Industry Press, 2000
[27] 黄乾尧, 李汉康. 高温合金 [M]. 北京: 冶金工业出版社, 2000
[28] Lin Z J, Li M S, Wang J Y, et al. High-temperature oxidation and hot corrosion of Cr2AlC [J]. Acta Mater., 2007, 55: 6182
[29] Liu Y L. Studies on the high temperature oxidation and hot corrosion behavior of Ni-based superalloys K4750 and K4169 [D]. Hefei: University of Science and Technology of China, 2021
[29] 刘艳丽. 镍基高温合金K4750和K4169的高温氧化和热腐蚀行为研究 [D]. 合肥: 中国科学技术大学, 2021
[30] Song P. Studies on the hot corrosion behavior of three Ni-base single crystal superalloys [D]. Hefei: University of Science and Technology of China, 2020
[30] 宋 鹏. 三种镍基单晶高温合金的热腐蚀行为研究 [D]. 合肥: 中国科学技术大学, 2020
[31] Liu G M, Yang H C, Liang Q, et al. Corrosion behavior of the Ni-Cr-Fe base superalloy GH984G in a synthetic coal ash and flue gas environment [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 863
[32] Li M S. High Temperature Corrosion of Metals [M]. Beijing: Metallurgical Industry Press, 2001: 385
[32] 李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2001: 385
[33] Song P, Liu M F, Jiang X W, et al. Influence of alloying elements on hot corrosion resistance of nickel-based single crystal superalloys coated with Na2SO4 salt at 900 ℃ [J]. Mater. Des., 2021, 197: 109197
[34] Nagai H, Okabayashi M. Deleterious effect of Ti addition on the oxidation resistance of Ni-20Cr alloy [J]. Trans. Japan Ins. Met., 1981, 22: 691
[35] Chang J X, Wang D, Liu T, et al. Role of tantalum in the hot corrosion of a Ni-base single crystal superalloy [J]. Corros. Sci., 2015, 98: 585
[36] Tsaur C C, Rock J C, Wang C J, et al. The hot corrosion of 310 stainless steel with pre-coated NaCl/Na2SO4 mixtures at 750 ℃ [J]. Mater. Chem. Phys., 2005, 89: 445
[37] Goebel J A, Pettit F S. Na2SO4-induced accelerated oxidation (hot corrosion) of nickel [J]. Metall. Trans., 1970, 1: 1943
[38] Rapp R A. Chemistry and electrochemistry of hot corrosion of metals [J]. Mater. Sci. Eng., 1987, 87: 319
[39] Luthra K L, Leblanc Jr O H. Low temperature hot corrosion of Co-Cr-Al alloys [J]. Mater. Sci. Eng., 1987, 87: 329
[40] Abbasi M, Kim B K, Shim D I, et al. Effects of surface deformation on the oxidation behavior of INCONEL 740 superalloy in humid air [J]. J. Alloy. Compd., 2016, 683: 212
[41] Cho J H, Kim T W, Son K S, et al. Aluminizing and boroaluminizing treatments of Mar-M247 and their effect on hot corrosion resistance in Na2SO4-NaCl molten salt [J]. Met. Mater. Int., 2003, 9: 303
[42] Jing Y H, Liu E Z, Zheng Z, et al. Hot corrosion resistance of filler alloy BCo46 [J]. Acta Metall. Sin., 2014, 50: 79
doi: 10.3724/SP.J.1037.2013.00216
[42] 景艳红, 刘恩泽, 郑 志 等. 钎料合金BCo46的抗热腐蚀性能 [J]. 金属学报, 2014, 50: 79
doi: 10.3724/SP.J.1037.2013.00216
[43] Hu G X, Cai X, Rong Y H, et al. Fundamentals of Materials Science 3rd ed. [M]. Shanghai: Shanghai Jiao Tong University Press, 2010: 154
[43] 胡赓祥, 蔡 珣, 戎咏华 等. 材料科学基础3版 [M]. 上海: 上海交通大学出版社, 2010: 154
[1] 黄勤英, 李彧卓, 阳颖飞, 任盼, 王启伟. Pt改性共晶高熵合金AlCoCrFeNi2.1 热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 115-126.
[2] 王粤, 耿树江, 王金龙, 王福会, 孙清云, 吴勇, 夏思瑶. K444合金表面CVD渗铝涂层耐高温95%Na2SO4 + 5%NaCl腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 127-136.
[3] 许习文, 舒小勇, 陈智群, 何海瑞, 董舒赫, 房雨晴, 彭晓. DD6单晶Ni基高温合金表面CVDAl涂层的氧化行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 148-154.
[4] 张勇康, 翟海民, 李旭强, 李文生. Fe基非晶涂层在Na2SO4 + K2SO4Na2SO4 +NaCl混合盐中的热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 92-102.
[5] 裴海清, 肖竞博, 李微, 于昊玉, 温志勋, 岳珠峰. Al-O元素聚集对镍基单晶高温合金氧化影响的第一性原理研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 173-181.
[6] 张金龙, 付广艳, 宁礼奎, 刘恩泽, 谭政, 佟健, 郑志. 两种热处理状态的镍基单晶高温合金在900℃(Na2SO4 + NaCl)混合盐中热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1625-1632.
[7] 马晋遥, 董楠, 郭振森, 韩培德. B、Ce微合金化对S31254超级奥氏体不锈钢析出相及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1610-1616.
[8] 喻政, 陈明辉, 王金龙, 杨莎莎, 王福会. 煤灰中碱金属硫酸盐和氯盐含量对HR3C和渗铝HR3C不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1389-1398.
[9] 李佳恒, 钱伟, 朱晶晶, 蔡杰, 花银群. 激光冲击强化对镍基单晶高温合金微观组织和抗高温氧化性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(5): 1295-1304.
[10] 洪孝木, 王永强, 李娜, 田凯, 杜娟. 时效处理对马氏体时效硬化不锈钢显微组织和局部腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(5): 1285-1294.
[11] 胡琪, 耿树江, 王金龙, 王福会, 孙清云, 吴勇, 夏思瑶. Inconel 718及其渗铝涂层在Na2SO4 + 5%NaCl混合盐膜下的热腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(3): 623-634.
[12] 王华, 王英杰, 刘恩泽. Ni含量对Co-Al-W合金热腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1419-1426.
[13] 廖敏行, 刘俊, 董宝军, 冷雪松, 蔡泽伦, 武俊伟, 贺建超. 盐雾环境对1Cr18Ni9Ti钎焊接头的影响研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[14] 尚进, 古岩, 赵京, 王哲, 张博, 赵统君, 陈泽浩, 王金龙. 增材制造Hastelloy X合金在850 ℃混合硫酸盐中热腐蚀行为及其对力学性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 671-676.
[15] 梁超雄, 梁小红, 韩培德. 新热处理工艺调控B元素分布对S31254超级奥氏体不锈钢第二相析出和耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 639-646.