Please wait a minute...
中国腐蚀与防护学报    DOI: 10.11902/1005.4537.2025.059
  本期目录 | 过刊浏览 |
新型耐微生物腐蚀油管钢的硫酸盐还原菌腐蚀行为研究

杨宝齐 闫茂成2  史显波2  高博文2

1 衡阳华菱钢管有限公司 衡阳 421099

2 中国科学院金属研究所 国家金属腐蚀控制工程技术研究中心 沈阳 110016

SRB Induced Corrosion Behavior of a Novel Microbial Corrosion Resistant Pipeline Steel
引用本文:

杨宝齐 闫茂成 史显波 高博文. 新型耐微生物腐蚀油管钢的硫酸盐还原菌腐蚀行为研究[J]. 中国腐蚀与防护学报, 10.11902/1005.4537.2025.059.

全文: PDF(1665 KB)  
摘要: 本文通过形貌观察、成份分析、微生物分析及电化学测试等方法,研究了耐微生物腐蚀(MIC)油管钢的硫酸盐还原菌(SRB)腐蚀行为。结果表明:SRB环境中耐MIC钢表面附着的活跃细菌数量大幅减少,生物膜厚度减小,耐MIC钢有效抑制了表面生物膜的附着生长;耐MIC钢具有更高的自腐蚀电位、更低的腐蚀电流密度和更大的电荷转移电阻;耐MIC钢表面腐蚀产物少,主要为致密的α-FeOOH,而普通钢表面则以疏松的Fe3O4为主,普通钢的失重腐蚀速率约为耐MIC钢的1.83倍,通过优化Cu-Cr-Ni三元合金体系,实现了抗菌与耐蚀性能的协同提升。
关键词 耐MIC钢 管道钢 微生物腐蚀 硫酸盐还原菌 微生物膜    
Abstract:The sulfate reducing bacteria (SRB) corrosion behavior of a microbial corrosion-resistant (MIC-resistant) pipeline steel was investigated through morphology observation, composition analysis, microbial culture analysis and electrochemical testing. The results show that, in the SRB environment, the number of active bacteria attached to the surface of MIC-resistant steel is significantly reduced, and the thickness of the biofilm decreases. The MIC-resistant steel effectively inhibits biofilm attachment and growth on its surface. The MIC-resistant steel exhibited a higher open-circuit potential, a lower corrosion current density, and a higher charge transfer resistance. There are fewer corrosion products on the surface of the MIC-resistant steel, mainly dense α-FeOOH layer, while the ordinary steel surface is mainly composed of a loose Fe?O? layer. The weight-loss corrosion rate of ordinary steel is approximately 1.83 times that of the MIC-resistant steel. By optimizing the Cu-Cr-Ni ternary alloy system, synergistic improvement of antibacterial and corrosion resistant was achieved.
Key wordsMicrobial corrosion resistant steel    pipeline steel    microbial corrosion    sulfate reducing bacteria    biofilm
收稿日期: 2025-02-21     
[1] 戚鹏, 王鹏, 曾艳, 张盾. 微生物腐蚀的检测方法和预测模型[J]. 中国腐蚀与防护学报, 2025, 45(3): 602-610.
[2] 王宇晗, 李俊, 刘恒维, 许楠, 刘杰, 陈旭. 海洋环境中金属材料微生物腐蚀研究进展[J]. 中国腐蚀与防护学报, 2025, 45(3): 577-588.
[3] 燕冰川, 曾云鹏, 张宁, 史显波, 严伟. 石油管材用含Cu钢焊接接头的微生物腐蚀研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 479-488.
[4] 姜慧芳, 刘扬豪, 刘莹, 李迎超, 于浩波, 赵博, 陈曦. 地下储氢库J55钢氢环境下微生物腐蚀机理研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 347-358.
[5] 许竞翔, 黄睿阳, 褚振华, 蒋全通. FeNiCoCrW0.2Al0.1 高熵合金在硫酸盐还原菌溶液环境下的腐蚀研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 460-468.
[6] 王娅利, 管方, 段继周, 张丽娜, 杨政险, 侯保荣. 鼠李糖脂与2,2-二溴-3-次氮基丙酰胺协同抑制X80管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2024, 44(6): 1412-1422.
[7] 裴莹莹, 管方, 董续成, 张瑞永, 段继周, 侯保荣. Desulfovibrio Bizertensis SY-1在阴极极化条件下对X70 管线钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 345-354.
[8] 柯楠, 倪莹莹, 何嘉淇, 柳海宪, 金正宇, 刘宏伟. 微生物胞外聚合物引起的金属腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(2): 278-294.
[9] 高秋英, 曾文广, 王恒, 刘元聪, 扈俊颖. 流体冲刷作用对SRB的腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1087-1093.
[10] 吴佳佳, 徐鸣, 王鹏, 张盾. 天然海水中硝酸盐的添加对EH40钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 765-772.
[11] 许萍, 赵美惠, 白鹏凯. 循环冷却水中HEDP对铁细菌腐蚀影响及机理研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 988-994.
[12] 马凯军, 王萌萌, 史振龙, 陈长风, 贾小兰. 温度对原油储罐罐底微生物腐蚀影响规律的研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1051-1057.
[13] 李振欣, 吕美英, 杜敏. 海水环境中组合电位极化对铁氧化菌腐蚀的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 211-217.
[14] 刘珺, 耿永娟, 李绍纯, 徐爱玲, 侯东帅, 刘昂, 郎秀璐, 陈旭, 刘国锋. TEOS/IBTS涂层对海洋潮汐区混凝土微生物污损防护效果研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 135-142.
[15] 邓佳丽, 闫茂成, 高博文, 张辉. 高铁动态交流干扰下管道钢的腐蚀行为试验研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 127-134.