Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (6): 1459-1473     CSTR: 32134.14.1005.4537.2025.029      DOI: 10.11902/1005.4537.2025.029
  综合评述 本期目录 | 过刊浏览 |
微生物诱导矿化抑制金属腐蚀:机制、设计策略及展望
李伟华, 李中(), 张丹妮(), 徐大可
东北大学腐蚀与防护中心 沈阳 110819
Microbial-induced Mineralization for Inhibiting Metal Corrosion: Mechanism, Design Strategies and Prospects
LI Weihua, LI Zhong(), ZHANG Danni(), XU Dake
Corrosion and Protection Center, Northeastern University, Shenyang 110819, China
引用本文:

李伟华, 李中, 张丹妮, 徐大可. 微生物诱导矿化抑制金属腐蚀:机制、设计策略及展望[J]. 中国腐蚀与防护学报, 2025, 45(6): 1459-1473.
Weihua LI, Zhong LI, Danni ZHANG, Dake XU. Microbial-induced Mineralization for Inhibiting Metal Corrosion: Mechanism, Design Strategies and Prospects[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1459-1473.

全文: PDF(1945 KB)   HTML
摘要: 

微生物因其具备规模化增殖、基因编辑及环境响应等优势,在抑制腐蚀方面展示出巨大潜力。本文首先综述了国内外关于微生物抑制腐蚀的不同机制的研究进展,概述了目前已发现的诱导矿化的微生物类型及几类典型的矿化产物类型,并详细介绍了微生物矿化抑制腐蚀的机制,重点分析了如何通过成核位点优化、改变环境因素、控制脲酶的表达及3D打印等策略人为干预微生物诱导矿化实现长效腐蚀防护。最后,对微生物矿化抑制腐蚀技术面临的挑战进行总结,并对如何优化微生物矿化抑制腐蚀的技术提出了展望。

关键词 微生物抑制腐蚀机制腐蚀与防护微生物矿化3D打印    
Abstract

Microorganisms are abundant in the environment and have shown great potential in inhibiting corrosion due to their advantages such as large-scale proliferation, gene editing, and environmental response. This paper first reviews the research progress on different mechanisms of microbial corrosion inhibition at home and abroad, summarizes the types of microorganisms that induce mineralization and several typical types of mineralization products that have been discovered so far, and elaborates on the mechanism of microbial mineralization for corrosion inhibition. It focuses on analyzing how to artificially intervene in microbial-induced mineralization through strategies such as optimizing nucleation sites, changing environmental factors, controlling urease expression, and 3D printing to achieve long-term corrosion protection. Finally, it summarizes the challenges faced by microbial mineralization for corrosion inhibition technology and proposes prospects for optimizing this technology.

Key wordsmicrobiologically influenced corrosion inhibition mechanism    corrosion and protection    microbial mineralization    3D printing
收稿日期: 2025-01-20      32134.14.1005.4537.2025.029
ZTFLH:  TG172  
基金资助:国家自然科学基金(52371056)
通讯作者: 李中,E-mail:lizhong@mail.neu.edu.cn,研究方向为微生物腐蚀与防护张丹妮,E-mail:zhangdanni@mail.neu.edu.cn,研究方向为固废资源化
Corresponding author: LI Zhong, E-mail: lizhong@mail.neu.edu.cn
ZHANG Danni, E-mail: zhangdanni@mail.neu.edu.cn
作者简介: 李伟华,男,2001年生,硕士生
图1  微生物抑制腐蚀机制示意图
MaterialBacteriumTesting environmentInhibition efficiency
X70 carbon steel[36]E. coli MBDSimulated seawater90%1
Q235 steel[81]ΔflrA mutant strains of Shewanella putrefaciensArtificial seawater26%1
Mild steel[41]Pseudomonas putidaMinimal broth96%1
Mild steel[77]Pseudomonas flavaBSS medium89%2
Mild steel[77]Pseudomonas stutzeriBSS medium69%2
316L stainless steel[78]Bacillus cereusArtificial seawater95%2
A36 steel[82]Vibrio neocaledonicus sp.Artificial seawater97%2
Alloy steel[83]Pseudoalteromonas piscicida2216E medium86%1
2A14 Aluminum alloy[84]Bacillus subtilis2216E medium93%2
Low-alloy steel[46]Bacillus subtilis2216E medium88%2
Low-alloy steel[77]Pseudoalteromonas lipolyticaArtificial seawater98%2
Low-alloy steel[19]Pseudoalteromonas lipolytica Δ171252216E medium98%2
Low-alloy steel[85]Pseudoalteromonas lipolytica2216E medium62%2
Low-alloy steel[86]Pseudoalteromonas lipolytica2216E medium28%2
表1  微生物矿化抑制不同金属腐蚀效果的比较
图2  微生物矿化在腐蚀防护中的作用机制示意图
图3  人工干预矿化策略示意图
[1] Lou Y T, Chang W W, Cui T Y, et al. Microbiologically influenced corrosion inhibition mechanisms in corrosion protection: A review [J]. Bioelectrochemistry, 2021, 141: 107883
[2] Sabel C F, Victor D G. Governing global problems under uncertainty: Making bottom-up climate policy work [J]. Clim. Change, 2017, 144(1): 15
[3] Zuo R J. Biofilms: Strategies for metal corrosion inhibition employing microorganisms [J]. Appl. Microbiol. Biotechnol., 2007, 76(6): 1245
[4] Wang Q R, Hou J, Hou B R, et al. Research progress of analytical methods for vapor phase inhibitors [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1189
[4] (王泉润, 侯 进, 侯保荣 等. 气相缓蚀剂分析方法研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 1189)
[5] Chang X T, Song J Q, Wang B, et al. Effect of micro-alloying with Cr, N and Al on corrosion resistance of high manganese austenitic steel in acidic salt spray environment [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 47
[5] (常雪婷, 宋嘉琪, 王 冰 等. 微合金化对高锰奥氏体钢在酸性盐雾环境下的耐蚀性能影响研究 [J]. 中国腐蚀与防护学报, 2024, 44: 47)
[6] Yu Z L, Liu B, Yu S N, et al. Enhancing the surface finish and corrosion resistance of laser powder bed fusion NiTi surfaces through chemical polishing [J]. J. Mater. Res. Technol., 2024, 29: 5507
[7] Zhou Z, Qiao W M, Lin Y B, et al. Phosphonate removal from discharged circulating cooling water using iron-carbon micro-electrolysis [J]. Water Sci. Technol., 2014, 70: 524
[8] Fedel M, Callone E, Fabbian M, et al. Influence of Ce3+ doping on molecular organization of Si-based organic/inorganic sol-gel layers for corrosion protection [J]. Appl. Surf. Sci., 2017, 414: 82
[9] Wang P J, Song Y H, Fan L, et al. Inhibition of Q235 steel in 1 mol/L HCl solution by a new efficient imidazolium schiff base corr-osion inhibitor [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 59
[9] (王鹏杰, 宋昱灏, 樊 林 等. 新型高效咪唑希夫碱缓蚀剂对Q235钢在1 mol/L HCl溶液中的缓蚀作用 [J]. 中国腐蚀与防护学报, 2024, 44: 59)
[10] Meckenstock R U, Elsner M, Griebler C, et al. Biodegradation: updating the concepts of control for microbial cleanup in contaminated aquifers [J]. Environ. Sci. Technol., 2015, 49: 7073
[11] Pang C M, Hong P Y, Guo H L, et al. Biofilm formation characteristics of bacterial isolates retrieved from a reverse osmosis membrane [J]. Environ. Sci. Technol., 2005, 39: 7541
[12] Little B J, Blackwood D J, Hinks J, et al. Microbially influenced corrosion-any progress?[J]. Corros. Sci., 2020, 170: 108641
[13] Li Z, Wang X Y, Wang J, et al. Bacterial biofilms as platforms engineered for diverse applications [J]. Biotechnol. Adv., 2022, 57: 107932
[14] Meliani A, Bensoltane A. Biofilm-mediated heavy metals bioremediation in PGPR Pseudomonas [J]. J. Bioremediat. Biodegrad., 2016, 7: 370
[15] Huang J F, Liu S Y, Zhang C, et al. Programmable and printable Bacillus subtilis biofilms as engineered living materials [J]. Nat. Chem. Biol., 2019, 15: 34
[16] Jimenez M, L’Heureux J, Kolaya E, et al. Synthetic extremophiles via species-specific formulations improve microbial therapeutics [J]. Nat. Mater., 2024, 23: 1436
[17] Moser F, Tham E, González L M, et al. Light-controlled, high-resolution patterning of living engineered bacteria onto textiles, ceramics, and plastic [J]. Adv. Funct. Mater., 2019, 29: 1901788
[18] Liu H X, Chen W, Tan Y, et al. Characterizations of the biomineralization film caused by marine Pseudomonas stutzeri and its mechanistic effects on X80 pipeline steel corrosion [J]. J. Mater. Sci. Technol., 2022, 125: 15
[19] Liu T, Guo Z W, Zeng Z S, et al. Marine bacteria provide lasting anticorrosion activity for steel via biofilm-induced mineralization [J]. ACS Appl. Mater. Interfaces, 2018, 10: 40317
[20] Zhou Y, Kong D Q, Wang X Y, et al. A small and highly sensitive red/far-red optogenetic switch for applications in mammals [J]. Nat. Biotechnol., 2022, 40: 262
[21] Sánchez-Román M, Romanek C S, Fernández-Remolar D C, et al. Aerobic biomineralization of Mg-rich carbonates: Implications for natural environments [J]. Chem. Geol., 2011, 281: 143
[22] Liu S N, Su W, Wei Z F, et al. Corrosion behavior analysis of carbon steel in natural and sterile seawater [J]. Equip. Environ. Eng., 2013, 10: 16
[23] Belkin S, Yagur-Kroll S, Kabessa Y, et al. Remote detection of buried landmines using a bacterial sensor [J]. Nat. Biotechnol., 2017, 35: 308
[24] Jayaraman A, Ornek D, Duarte D A, et al. Axenic aerobic biofilms inhibit corrosion of copper and aluminum [J]. Appl. Microbiol. Biotechnol., 1999, 52: 787
[25] Ponmariappan S, Maruthamuthu S, Palaniappan R. Inhibition of corrosion of mild steel by Staphylococcus sp [J]. Trans. SAEST, 2004, 39: 99
[26] Cai D L, Wu J Y, Chai K. Microbiologically influenced corrosion behavior of carbon steel in the presence of marine bacteria Pseudomonas sp. and Vibrio sp. [J]. ACS Omega, 2021, 6: 3780
[27] Ghiara G, Spotorno R, Delsante S, et al. Opposite corrosion behaviour of aluminum bronze induced by Pseudomonas fluorescens and its metabolites [J]. Corros. Sci., 2022, 208: 110656
[28] Qian H C, Chang W W, Liu W L, et al. Investigation of microbiologically influenced corrosion inhibition of 304 stainless steel by D-cysteine in the presence of Pseudomonas aeruginosa [J]. Bioelectrochemistry, 2022, 143: 107953
[29] Pedersen A, Hermansson M. The effects on metal corrosion by Serratia marcescens and a Pseudomonas sp.[J]. Biofouling, 1989, 1: 313
[30] Jayaraman A, Earthman J C, Wood T K. Corrosion inhibition by aerobic biofilms on SAE 1018 steel [J]. Appl. Microbiol. Biotechnol., 1997, 47: 62
[31] Yang H, Dong C, Wang H M, et al. Constructing nickel-iron oxyhydroxides integrated with iron oxides by microorganism corrosion for oxygen evolution [J]. Proc. Natl. Acad. Sci. U.S.A., 2022, 119: e2202812119
[32] Lee A K, Newman D K. Microbial iron respiration: Impacts on corrosion processes [J]. Appl. Microbiol. Biotechnol., 2003, 62: 134
[33] Dubiel M, Hsu C H, Chien C C, et al. Microbial iron respiration can protect steel from corrosion [J]. Appl. Environ. Microbiol., 2002, 68: 1440
[34] Ke N, Ni Y Y, He J Q, et al. Research progress of metal corrosion caused by extracellular polymeric substances of microorganisms [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 278
[34] (柯 楠, 倪莹莹, 何嘉淇 等. 微生物胞外聚合物引起的金属腐蚀的研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 278)
[35] Ghafari M D, Bahrami A, Rasooli I, et al. Bacterial exopolymeric inhibition of carbon steel corrosion [J]. Int. Biodeter. Biodegr., 2013, 80: 29
[36] Li Z, Ren Y H, Li Z T, et al. Engineered living biofilm with enhanced metal binding ability for corrosion protection in seawater [J]. Adv. Funct. Mater., 2024, 34: 2313120
[37] Li Z, Xu Y, Zhang J R, et al. Living marine bacterium Tenacibaculum mesophilum D-6 inhibits crevice corrosion of X70 carbon steel [J]. Corros. Sci., 2023, 215: 111012
[38] Saleem Khan M, Xu D K, Liu D, et al. Corrosion inhibition of X80 steel in simulated marine environment with Marinobacter aquaeolei [J]. Acta Metall. Sin. (Eng. Lett.), 2019, 32: 1373
[39] Wang J, Du M, Li G N, et al. Research progress on microbiological inhibition of corrosion: A review [J]. J. Clean. Prod., 2022, 373: 133658
[40] Stadler R, Fuerbeth W, Harneit K, et al. First evaluation of the applicability of microbial extracellular polymeric substances for corrosion protection of metal substrates [J]. Electrochim. Acta, 2008, 54: 91
[41] Suma M S, Basheer R, Sreelekshmy B R, et al. Pseudomonas putida RSS biopassivation of mild steel for long term corrosion inhibition [J]. Int. Biodeter. Biodegr., 2019, 137: 59
[42] Daniels R, Vanderleyden J, Michiels J. Quorum sensing and swarming migration in bacteria [J]. FEMS Microbiol. Rev., 2004, 28: 261
[43] Stadler R, Wei L, Fürbeth W, et al. Influence of bacterial exopolymers on cell adhesion of Desulfovibrio vulgaris on high alloyed steel: corrosion inhibition by extracellular polymeric substances (EPS) [J]. Mater. Corros., 2010, 61: 1008
[44] Lee A K, Buehler M G, Newman D K. Influence of a dual-species biofilm on the corrosion of mild steel [J]. Corros. Sci., 2006, 48: 165
[45] Guo Z W, Pan S, Liu T, et al. Bacillus subtilis inhibits Vibrio natriegens-induced corrosion via biomineralization in seawater [J]. Front. Microbiol., 2019, 10: 1111
[46] Hao X P, Bai Y, Ren C H, et al. Self-healing effect of damaged coatings via biomineralization by Shewanella putrefaciens [J]. Corros. Sci., 2022, 196: 110067
[47] Comensoli L, Albini M, Kooli W, et al. Investigation of biogenic passivating layers on corroded iron [J]. Materials, 2020, 13: 1176
[48] Hamadi L, Mansouri S, Oulmi K, et al. The use of amino acids as corrosion inhibitors for metals: A review [J]. Egypt. J. Petrol., 2018, 27: 1157
[49] Parthipan P, Sabarinathan D, Angaiah S, et al. Glycolipid biosurfactant as an eco-friendly microbial inhibitor for the corrosion of carbon steel in vulnerable corrosive bacterial strains [J]. J. Mol. Liq., 2018, 261: 473
[50] Wang Y L, Guan F, Duan J Z, et al. Synergistic inhibition of rhamnolipid and 2,2-dibromo-3-hypoazopropionamide on microbiologically influenced corrosion of X80 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1412
[50] (王娅利, 管 方, 段继周 等. 鼠李糖脂与2,2-二溴-3-次氮基丙酰胺协同抑制X80管线钢的微生物腐蚀 [J]. 中国腐蚀与防护学报, 2024, 44: 1412)
[51] Örnek D, Jayaraman A, Syrett B, et al. Pitting corrosion inhibition of aluminum 2024 by Bacillus biofilms secreting polyaspartate or γ-polyglutamate [J]. Appl. Microbiol. Biotechnol., 2002, 58: 651
[52] Zin I M, Pokhmurskii V I, Korniy S A, et al. Corrosion inhibition of aluminium alloy by rhamnolipid biosurfactant derived from pseudomonas sp. PS-17 [J]. Anti-Corros. Method. Mater., 2018, 65: 517
[53] El-Sheshtawy H S, Aiad I, Osman M E, et al. Production of biosurfactant from Bacillus licheniformis for microbial enhanced oil recovery and inhibition the growth of sulfate reducing bacteria [J]. Egypt. J. Petrol., 2015, 24: 155
[54] Purwasena I A, Astuti D I, Fauziyyah N A. Inhibition of microbial influenced corrosion on carbon steel ST37 using biosurfactant produced by Bacillus sp. [J]. Mater. Res. Express, 2019, 6: 115405
[55] Padder S A, Prasad R, Shah A H. Quorum sensing: a less known mode of communication among fungi [J]. Microbiol. Res., 2018, 210: 51
[56] Xiang Y L, Xiang Y K, Jiao Y R. Simultaneous disintegration of municipal sludge and generation of ethanol with magnetic layered double hydroxides [J]. Bioresource Technol., 2019, 289: 121654
[57] Jun J, Li T S, Frankel G S, et al. Corrosion and repassivation of Super 13Cr stainless steel in artificial 1D pit electrodes at elevated temperature [J]. Corros. Sci., 2020, 173: 108754
[58] Khan M B, Prezant R S. Microplastic abundances in a mussel bed and ingestion by the ribbed marsh mussel Geukensia demissa [J]. Mar. Pollut. Bull., 2018, 130: 67
[59] Liu H W, Fu C Y, Gu T Y, et al. Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water [J]. Corros. Sci., 2015, 100: 484
[60] Batmanghelich F, Li L, Seo Y. Influence of multispecies biofilms of Pseudomonas aeruginosa and Desulfovibrio vulgaris on the corrosion of cast iron [J]. Corros. Sci., 2017, 121: 94
[61] Korenblum E, Sebastián G V, Paiva M M, et al. Action of antimicrobial substances produced by different oil reservoir Bacillus strains against biofilm formation [J]. Appl. Microbiol. Biotechnol., 2008, 79: 97
[62] Volkland H P, Harms H, Knopf K, et al. Corrosion inhibition of mild steel by bacteria [J]. Biofouling, 2000, 15: 287
[63] Okyay T O, Rodrigues D F. Optimized carbonate micro-particle production by Sporosarcina pasteurii using response surface methodology [J]. Ecol. Eng., 2014, 62: 168
[64] Volkland H P, Harms H, Müller B, et al. Bacterial phosphating of mild (unalloyed) steel [J]. Appl. Environ. Microbiol., 2000, 66: 4389
[65] Chekroun K B, Rodríguez-Navarro C, González-Muñoz M T, et al. Precipitation and growth morphology of calcium carbonate induced by Myxococcus xanthus: Implications for recognition of bacterial carbonates [J]. J. Sediment. Res., 2004, 74: 868
[66] Joseph E, Cario S, Simon A, et al. Protection of metal artifacts with the formation of metal-oxalates complexes by Beauveria bassiana [J]. Front. Microbiol., 2012, 2: 270
[67] Warthmann R, van Lith Y, Vasconcelos C, et al. Bacterially induced dolomite precipitation in anoxic culture experiments [J]. Geology, 2000, 28: 1091
[68] Kooli W M, Comensoli L, Maillard J, et al. Bacterial iron reduction and biogenic mineral formation for the stabilisation of corroded iron objects [J]. Sci. Rep., 2018, 8: 764
[69] Alabbas F M, Bhola S M, Spear J R, et al. The shielding effect of wild type iron reducing bacterial flora on the corrosion of linepipe steel [J]. Eng. Fail. Anal., 2013, 33: 222
[70] Roh Y, Gao H C, Vali H, et al. Metal reduction and iron biomineralization by a psychrotolerant Fe(III)-reducing bacterium, Shewanella sp. strain PV-4 [J]. Appl. Environ. Microbiol., 2006, 72: 3236
[71] Chongdar S, Gunasekaran G, Kumar P. Corrosion inhibition of mild steel by aerobic biofilm [J]. Electrochim. Acta, 2005, 50: 4655
[72] Hao X P, Bai Y, Lou Y T, et al. Research progress of microbial mineralization impact on inhibits metal corrosion behavior [J]. Surf. Technol., 2021, 50(11): 18
[72] (郝湘平, 摆 云, 娄云天 等. 微生物矿化作用抑制金属腐蚀行为的研究进展 [J]. 表面技术, 2021, 50(11): 18)
[73] Volkland H P, Harms H, Kaufmann K, et al. Repair of damaged vivianite coatings on mild steel using bacteria [J]. Corros. Sci., 2001, 43: 2135
[74] Rangarajan G, Farnood R. Role of persistent free radicals and lewis acid sites in visible-light-driven wet peroxide activation by solid acid biochar catalysts-a mechanistic study [J]. J. Hazard. Mater., 2022, 438: 129514
[75] Song B, Weijma J, Buisman C J N, et al. How sulfur species can accelerate the biological immobilization of the toxic selenium oxyanions and promote stable hexagonal Se0 formation [J]. J. Hazard. Mater., 2022, 437: 129367
[76] Sun B, Jiang J B, Tao J L, et al. Biomineralization of carbonates induced by Mucilaginibacter gossypii HFF1: Significant role of biochemical parameters [J]. Minerals, 2022, 12: 614
[77] Gunasekaran G, Chongdar S, Gaonkar S N, et al. Influence of bacteria on film formation inhibiting corrosion [J]. Corros. Sci., 2004, 46: 1953
[78] Li S L, Qu Q, Li L, et al. Bacillus cereus s-EPS as a dual bio-functional corrosion and scale inhibitor in artificial seawater [J]. Water Res., 2019, 166: 115094
[79] Bazylinski D A, Frankel R B. Biologically controlled mineralization in prokaryotes [J]. Rev. Mineral. Geochem., 2003, 54: 217
[80] Qin W, Wang C Y, Ma Y X, et al. Microbe-mediated extracellular and intracellular mineralization: Environmental, industrial, and biotechnological applications [J]. Adv. Mater., 2022, 34: 2109924
[81] Lou Y T, Chang W W, Cui T Y, et al. Microbiologically influenced corrosion inhibition induced by S. putriefaciens mineralization under extracellular polymeric substance regulation via FlrA and FlhG genes [J]. Corros. Sci., 2023, 221: 111350
[82] Moradi M, Song Z L, Tao X. Introducing a novel bacterium, Vibrio neocaledonicus sp., with the highest corrosion inhibition efficiency [J]. Electrochem. Commun., 2015, 51: 64
[83] Guo Z W, Hui X R, Zhao Q Y, et al. Pigmented Pseudoalteromonas piscicida exhibited dual effects on steel corrosion: Inhibition of uniform corrosion and induction of pitting corrosion [J]. Corros. Sci., 2021, 190: 109687
[84] Shen Y Y, Dong Y H, Yang Y, et al. Study of pitting corrosion inhibition effect on aluminum alloy in seawater by biomineralized film [J]. Bioelectrochemistry, 2020, 132: 107408
[85] Guo N, Zhao Q Y, Hui X R, et al. Enhanced corrosion protection action of biofilms based on endogenous and exogenous bacterial cellulose [J]. Corros. Sci., 2022, 194: 109931
[86] Guo N, Wang Y N, Hui X R, et al. Marine bacteria inhibit corrosion of steel via synergistic biomineralization [J]. J. Mater. Sci. Technol., 2021, 66: 82
[87] Ahmadijokani F, Tajahmadi S, Bahi A, et al. Ethylenediamine-functionalized Zr-based MOF for efficient removal of heavy metal ions from water [J]. Chemosphere, 2021, 264: 128466
[88] Mohammadi I, Shahrabi T, Mahdavian M, et al. Construction of an epoxy coating with excellent protection performance on the AA 2024-T3 using ion-exchange materials loaded with eco-friendly corrosion inhibitors [J]. Prog. Org. Coat., 2022, 166: 106786
[89] Tuck B, Watkin E, Somers A, et al. A critical review of marine biofilms on metallic materials [J]. npj Mater. Degrad., 2022, 6: 25
[90] Henriksen K, Stipp S L S, Young J R, et al. Biological control on calcite crystallization: AFM investigation of coccolith polysaccharide function [J]. Am. Mineral., 2004, 89: 1709
[91] Liu H W, Gu T Y, Zhang G A, et al. The effect of magneticfield on biomineralization and corrosion behavior of carbon steel induced by iron-oxidizing bacteria [J]. Corros. Sci., 2016, 102: 93
[92] Yan H X, Han Z Z, Zhao H, et al. The bio-precipitation of calcium and magnesium ions by free and immobilized Lysinibacillus fusiformis DB1-3 in the wastewate [J]. J. Clean. Prod., 2020, 252: 119826
[93] Silva R S, Meneguzzi Á. Passivation of carbon steel using intelligent epoxy paint [J]. Coatings, 2020, 10: 452
[94] An Y, Song Y Q, Feng Y F, et al. Research of corrosion behavior of Hydroxy calcium phosphate on the surface of medical magnesium alloy [J]. J. Inn. Mongolia Univ. Sci. Technol., 2016, 35: 50
[94] (安 玥, 宋义全, 冯宇飞 等. 医用镁合金沉积羟基磷酸钙的腐蚀性研究 [J]. 内蒙古科技大学学报, 2016, 35: 50)
[95] Liu J Y, Zhang X N, Xiao C S, et al. A drug-mineralized hydrogel orchestrated by spontaneous dynamic mineralization [J]. Adv. Funct. Mater., 2023, 34: 2311844
[96] Lai H J, Ding X Z, Cui M J, et al. Mechanisms and influencing factors of biomineralization based heavy metal remediation: A review [J]. Biogeotechnics, 2023, 1: 100039
[97] Wang L, Li D X, Huang Y W, et al. Bionic mineralized 3D-printed scaffolds with enhanced in situ mineralization for cranial bone regeneration [J]. Adv. Funct. Mater., 2024, 34: 2309042
[98] Wang Q B, Karadas Ö, Rosenholm J M, et al. Bioprinting macroporous hydrogel with aqueous two-phase emulsion-based bioink: in Vitro mineralization and differentiation empowered by phosphorylated cellulose nanofibrils [J]. Adv. Funct. Mater., 2024, 34: 2400431
[99] Delgado G, Delgado R, Párraga J, et al. Precipitation of carbonates and phosphates by bacteria in extract solutions from a semi-arid saline soil. Influence of Ca2+ and Mg2+ concentrations and Mg2+/Ca2+ molar ratio in biomineralization [J]. Geomicrobiol. J., 2008, 25: 1
[100] Ahmed I A M, Young S D, Crout N M J. Ageing and structural effects on the sorption characteristics of Cd2+ by clinoptilolite and Y-type zeolite studied using isotope exchange technique [J]. J. Hazard. Mater., 2010, 184: 574
[101] Lu C Y, Diyatmika W, Lou B S, et al. Superimposition of high power impulse and middle frequency magnetron sputtering for fabrication of CrTiBN multicomponent hard coatings [J]. Surf. Coat. Technol., 2018, 350: 962
[102] Lan L, Chen S H, Cao Y, et al. Preparation of ceria-zirconia by modified coprecipitation method and its supported Pd-only three-way catalyst [J]. J. Colloid Interf. Sci., 2015, 450: 404
[103] Zheng X Y, Shen Y H, Wang X Y, et al. Effect of pH on uranium(VI) biosorption and biomineralization by Saccharomyces cerevisiae [J]. Chemosphere, 2018, 203: 109
[104] Zheng Y T, Xiao C Q, Chi R. Remediation of soil cadmium pollution by biomineralization using microbial-induced precipitation: A review [J]. World J. Microb. Biot., 2021, 37: 208
[105] Jiang L H, Liu X D, Yin H Q, et al. The utilization of biomineralization technique based on microbial induced phosphate precipitation in remediation of potentially toxic ions contaminated soil: a mini review [J]. Ecotox. Environ. Saf., 2020, 191: 110009
[106] Maity J P, Chen G S, Huang Y H, et al. Ecofriendly heavy metal stabilization: microbial induced mineral precipitation (MIMP) and biomineralization for heavy metals within the contaminated soil by indigenous bacteria [J]. Geomicrobiol. J., 2019, 36: 612
[107] Wang C L, Hao L L, Sun X T, et al. Response mechanism of psychrotolerant Bacillus cereus D2 towards Ni(II) toxicity and involvement of amino acids in Ni (II) toxicity reduction [J]. J. Hazard. Mater., 2022, 430: 128363
[108] Xu H, Chang J L, Wang H, et al. Enhancing direct interspecies electron transfer in syntrophic-methanogenic associations with (semi)conductive iron oxides: Effects and mechanisms [J]. Sci. Total Environ., 2019, 695: 133876
[109] Qian H C, Xu D K, Du C W, et al. Dual-action smart coatings with a self-healing superhydrophobic surface and anti-corrosion properties [J]. J. Mater. Chem., 2017, 5A: 2355
[110] Ho S H, Zhang C Y, Chen W H, et al. Characterization of biomass waste torrefaction under conventional and microwave heating [J]. Bioresource Technol., 2018, 264: 7
[111] Mohan S V, Rao N C, Prasad K K, et al. Bioaugmentation of an anaerobic sequencing batch biofilm reactor (AnSBBR) with immobilized sulphate reducing bacteria (SRB) for the treatment of sulphate bearing chemical wastewater [J]. Process Biochem., 2005, 40: 2849
[112] Zhu J M, Marchant R E. Design properties of hydrogel tissue-engineering scaffolds [J]. Expert Rev. Med. Devic., 2011, 8: 607
[113] Liu X S, Lian X Y, Wang B Y, et al. Simulation for the correlation of positron annihilation rate with charge density near defects in iron [J]. Nucl. Instrum. Meth. Phys. Res., 2019, 461B: 88
[114] Said B M, Eddine K D, Salim C. Artificial neuron network based faults detection and localization in the high voltage transmission lines with mho distance relay [J]. J. Eur. Syst. Autom., 2020, 53: 137
[115] Chen G D, Liang X Y, Zhang P, et al. Bioinspired 3D printing of functional materials by harnessing enzyme-induced biomineralization [J]. Adv. Funct. Mater., 2022, 32: 2113262
[116] Xu L P, Kang H F, Wei W Y, et al. Freezing, salting‐out and mineralization—a simple, universal and modular strategy for constructing mineralized hydrogels [J]. Adv. Funct. Mater., 2024, 34: 2406367
[117] Price P B, Sowers T. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival [J]. Proc. Natl. Acad. Sci. U.S.A., 2004, 101: 4631
[118] Del Mundo Dacera D, Babel S. Removal of heavy metals from contaminated sewage sludge using Aspergillus niger fermented raw liquid from pineapple wastes [J]. Bioresource Technol., 2008, 99: 1682
[119] Chen M J, Li Y F, Jiang X R, et al. Study on soil physical structure after the bioremediation of Pb pollution using microbial-induced carbonate precipitation methodology [J]. J. Hazard. Mater., 2021, 411: 125103
[120] Kim J H, Lee J Y. An optimum condition of MICP indigenous bacteria with contaminated wastes of heavy metal [J]. J. Mater. Cycles Waste Manag., 2019, 21: 239
[121] Mitchell A C, Ferris F G. The coprecipitation of Sr into calcite precipitates induced by bacterial ureolysis in artificial groundwater: temperature and kinetic dependence [J]. Geochim. Cosmochim. Acta, 2005, 69: 4199
[122] Zhang P, Liu X Q, Yang L Y, et al. Immobilization of Cd2+ and Pb2+ by biomineralization of the carbonate mineralized bacterial consortium JZ1 [J]. Environ. Sci. Pollut. Res., 2023, 30: 22471
[123] Kip N, van Veen J A. The dual role of microbes in corrosion [J]. ISME J., 2015, 9: 542
[124] Granato A E C, Rodrigues B V M, Rodrigues-Junior D M, et al. Magnetic super-hydrophilic carbon nanotubes/graphene oxide composite as nanocarriers of mesenchymal stem cells: Insights into the time and dose dependences [J]. Mater. Sci. Eng., 2016, 67C: 694
[125] Drewello R, Weissmann R. Microbially influenced corrosion of glass [J]. Appl. Microbiol. Biotechnol., 1997, 47: 337
[126] Pu Y N, Dou W W, Cheng Y F, et al. Biogenic H2S and extracellular electron transfer resulted in two-coexisting mechanisms in 90/10 Cu-Ni alloy corrosion by a sulfate-reducing bacteria [J]. Corros. Sci., 2023, 211: 110911
[127] Dave A, Samarth A, Karolia R, et al. Characterization of ocular clinical isolates of Pseudomonas aeruginosa from non-contact lens related keratitis patients from south India [J]. Microorganisms, 2020, 8: 260
[128] Zrimsek A B, Chiang N, Mattei M, et al. Single-molecule chemistry with surface- and tip-enhanced raman spectroscopy [J]. Chem. Rev., 2017, 117: 7583
[129] Lei Y, Xu Y, Zeng Q, et al. A novel smart anti-corrosive coating based on the beanpod-inspired microcontainers with self-reporting and self-healing abilities [J]. Prog. Org. Coat., 2025, 198: 108893
[130] Li M K, Hu Z S, Liu D, et al. Efficient antibacterial and microbial corrosion resistant photocatalytic coating: Enhancing performance with S-type heterojunction and Cu synergy [J]. Chem. Eng. J., 2024, 495: 153519
[1] 陈丽娟, 晁刘伟, 赵景茂. CeO2@Zr-MOF复合材料的制备及其对环氧涂层保护性能的提升作用[J]. 中国腐蚀与防护学报, 2025, 45(3): 664-674.
[2] 赵艳亮, 赵景茂. 层状双金属氢氧化物对镁合金的保护作用及自愈性能研究进展[J]. 中国腐蚀与防护学报, 2023, 43(1): 1-5.
[3] 王伟杰, 汉继程, 毛阳, 官自超, 狄志刚, 缪磊, 马胜军. 保温层下腐蚀监检测技术研究进展[J]. 中国腐蚀与防护学报, 2023, 43(1): 22-28.
[4] 王正泉,李言涛,徐玮辰,杨黎晖,孙丛涛. 全球腐蚀与防护领域研究现状与发展趋势分析:基于文献计量学和信息可视化分析[J]. 中国腐蚀与防护学报, 2019, 39(3): 201-214.
[5] 张冬梅; 赵美娣 . 《中国腐蚀与防护学报》1996-2000年引文统计分析[J]. 中国腐蚀与防护学报, 2002, 22(3): 189-191 .