|
|
|
| 微生物诱导矿化抑制金属腐蚀:机制、设计策略及展望 |
李伟华, 李中( ), 张丹妮( ), 徐大可 |
| 东北大学腐蚀与防护中心 沈阳 110819 |
|
| Microbial-induced Mineralization for Inhibiting Metal Corrosion: Mechanism, Design Strategies and Prospects |
LI Weihua, LI Zhong( ), ZHANG Danni( ), XU Dake |
| Corrosion and Protection Center, Northeastern University, Shenyang 110819, China |
引用本文:
李伟华, 李中, 张丹妮, 徐大可. 微生物诱导矿化抑制金属腐蚀:机制、设计策略及展望[J]. 中国腐蚀与防护学报, 2025, 45(6): 1459-1473.
Weihua LI,
Zhong LI,
Danni ZHANG,
Dake XU.
Microbial-induced Mineralization for Inhibiting Metal Corrosion: Mechanism, Design Strategies and Prospects[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1459-1473.
| [1] |
Lou Y T, Chang W W, Cui T Y, et al. Microbiologically influenced corrosion inhibition mechanisms in corrosion protection: A review [J]. Bioelectrochemistry, 2021, 141: 107883
|
| [2] |
Sabel C F, Victor D G. Governing global problems under uncertainty: Making bottom-up climate policy work [J]. Clim. Change, 2017, 144(1): 15
|
| [3] |
Zuo R J. Biofilms: Strategies for metal corrosion inhibition employing microorganisms [J]. Appl. Microbiol. Biotechnol., 2007, 76(6): 1245
|
| [4] |
Wang Q R, Hou J, Hou B R, et al. Research progress of analytical methods for vapor phase inhibitors [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1189
|
| [4] |
(王泉润, 侯 进, 侯保荣 等. 气相缓蚀剂分析方法研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 1189)
|
| [5] |
Chang X T, Song J Q, Wang B, et al. Effect of micro-alloying with Cr, N and Al on corrosion resistance of high manganese austenitic steel in acidic salt spray environment [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 47
|
| [5] |
(常雪婷, 宋嘉琪, 王 冰 等. 微合金化对高锰奥氏体钢在酸性盐雾环境下的耐蚀性能影响研究 [J]. 中国腐蚀与防护学报, 2024, 44: 47)
|
| [6] |
Yu Z L, Liu B, Yu S N, et al. Enhancing the surface finish and corrosion resistance of laser powder bed fusion NiTi surfaces through chemical polishing [J]. J. Mater. Res. Technol., 2024, 29: 5507
|
| [7] |
Zhou Z, Qiao W M, Lin Y B, et al. Phosphonate removal from discharged circulating cooling water using iron-carbon micro-electrolysis [J]. Water Sci. Technol., 2014, 70: 524
|
| [8] |
Fedel M, Callone E, Fabbian M, et al. Influence of Ce3+ doping on molecular organization of Si-based organic/inorganic sol-gel layers for corrosion protection [J]. Appl. Surf. Sci., 2017, 414: 82
|
| [9] |
Wang P J, Song Y H, Fan L, et al. Inhibition of Q235 steel in 1 mol/L HCl solution by a new efficient imidazolium schiff base corr-osion inhibitor [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 59
|
| [9] |
(王鹏杰, 宋昱灏, 樊 林 等. 新型高效咪唑希夫碱缓蚀剂对Q235钢在1 mol/L HCl溶液中的缓蚀作用 [J]. 中国腐蚀与防护学报, 2024, 44: 59)
|
| [10] |
Meckenstock R U, Elsner M, Griebler C, et al. Biodegradation: updating the concepts of control for microbial cleanup in contaminated aquifers [J]. Environ. Sci. Technol., 2015, 49: 7073
|
| [11] |
Pang C M, Hong P Y, Guo H L, et al. Biofilm formation characteristics of bacterial isolates retrieved from a reverse osmosis membrane [J]. Environ. Sci. Technol., 2005, 39: 7541
|
| [12] |
Little B J, Blackwood D J, Hinks J, et al. Microbially influenced corrosion-any progress?[J]. Corros. Sci., 2020, 170: 108641
|
| [13] |
Li Z, Wang X Y, Wang J, et al. Bacterial biofilms as platforms engineered for diverse applications [J]. Biotechnol. Adv., 2022, 57: 107932
|
| [14] |
Meliani A, Bensoltane A. Biofilm-mediated heavy metals bioremediation in PGPR Pseudomonas [J]. J. Bioremediat. Biodegrad., 2016, 7: 370
|
| [15] |
Huang J F, Liu S Y, Zhang C, et al. Programmable and printable Bacillus subtilis biofilms as engineered living materials [J]. Nat. Chem. Biol., 2019, 15: 34
|
| [16] |
Jimenez M, L’Heureux J, Kolaya E, et al. Synthetic extremophiles via species-specific formulations improve microbial therapeutics [J]. Nat. Mater., 2024, 23: 1436
|
| [17] |
Moser F, Tham E, González L M, et al. Light-controlled, high-resolution patterning of living engineered bacteria onto textiles, ceramics, and plastic [J]. Adv. Funct. Mater., 2019, 29: 1901788
|
| [18] |
Liu H X, Chen W, Tan Y, et al. Characterizations of the biomineralization film caused by marine Pseudomonas stutzeri and its mechanistic effects on X80 pipeline steel corrosion [J]. J. Mater. Sci. Technol., 2022, 125: 15
|
| [19] |
Liu T, Guo Z W, Zeng Z S, et al. Marine bacteria provide lasting anticorrosion activity for steel via biofilm-induced mineralization [J]. ACS Appl. Mater. Interfaces, 2018, 10: 40317
|
| [20] |
Zhou Y, Kong D Q, Wang X Y, et al. A small and highly sensitive red/far-red optogenetic switch for applications in mammals [J]. Nat. Biotechnol., 2022, 40: 262
|
| [21] |
Sánchez-Román M, Romanek C S, Fernández-Remolar D C, et al. Aerobic biomineralization of Mg-rich carbonates: Implications for natural environments [J]. Chem. Geol., 2011, 281: 143
|
| [22] |
Liu S N, Su W, Wei Z F, et al. Corrosion behavior analysis of carbon steel in natural and sterile seawater [J]. Equip. Environ. Eng., 2013, 10: 16
|
| [23] |
Belkin S, Yagur-Kroll S, Kabessa Y, et al. Remote detection of buried landmines using a bacterial sensor [J]. Nat. Biotechnol., 2017, 35: 308
|
| [24] |
Jayaraman A, Ornek D, Duarte D A, et al. Axenic aerobic biofilms inhibit corrosion of copper and aluminum [J]. Appl. Microbiol. Biotechnol., 1999, 52: 787
|
| [25] |
Ponmariappan S, Maruthamuthu S, Palaniappan R. Inhibition of corrosion of mild steel by Staphylococcus sp [J]. Trans. SAEST, 2004, 39: 99
|
| [26] |
Cai D L, Wu J Y, Chai K. Microbiologically influenced corrosion behavior of carbon steel in the presence of marine bacteria Pseudomonas sp. and Vibrio sp. [J]. ACS Omega, 2021, 6: 3780
|
| [27] |
Ghiara G, Spotorno R, Delsante S, et al. Opposite corrosion behaviour of aluminum bronze induced by Pseudomonas fluorescens and its metabolites [J]. Corros. Sci., 2022, 208: 110656
|
| [28] |
Qian H C, Chang W W, Liu W L, et al. Investigation of microbiologically influenced corrosion inhibition of 304 stainless steel by D-cysteine in the presence of Pseudomonas aeruginosa [J]. Bioelectrochemistry, 2022, 143: 107953
|
| [29] |
Pedersen A, Hermansson M. The effects on metal corrosion by Serratia marcescens and a Pseudomonas sp.[J]. Biofouling, 1989, 1: 313
|
| [30] |
Jayaraman A, Earthman J C, Wood T K. Corrosion inhibition by aerobic biofilms on SAE 1018 steel [J]. Appl. Microbiol. Biotechnol., 1997, 47: 62
|
| [31] |
Yang H, Dong C, Wang H M, et al. Constructing nickel-iron oxyhydroxides integrated with iron oxides by microorganism corrosion for oxygen evolution [J]. Proc. Natl. Acad. Sci. U.S.A., 2022, 119: e2202812119
|
| [32] |
Lee A K, Newman D K. Microbial iron respiration: Impacts on corrosion processes [J]. Appl. Microbiol. Biotechnol., 2003, 62: 134
|
| [33] |
Dubiel M, Hsu C H, Chien C C, et al. Microbial iron respiration can protect steel from corrosion [J]. Appl. Environ. Microbiol., 2002, 68: 1440
|
| [34] |
Ke N, Ni Y Y, He J Q, et al. Research progress of metal corrosion caused by extracellular polymeric substances of microorganisms [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 278
|
| [34] |
(柯 楠, 倪莹莹, 何嘉淇 等. 微生物胞外聚合物引起的金属腐蚀的研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 278)
|
| [35] |
Ghafari M D, Bahrami A, Rasooli I, et al. Bacterial exopolymeric inhibition of carbon steel corrosion [J]. Int. Biodeter. Biodegr., 2013, 80: 29
|
| [36] |
Li Z, Ren Y H, Li Z T, et al. Engineered living biofilm with enhanced metal binding ability for corrosion protection in seawater [J]. Adv. Funct. Mater., 2024, 34: 2313120
|
| [37] |
Li Z, Xu Y, Zhang J R, et al. Living marine bacterium Tenacibaculum mesophilum D-6 inhibits crevice corrosion of X70 carbon steel [J]. Corros. Sci., 2023, 215: 111012
|
| [38] |
Saleem Khan M, Xu D K, Liu D, et al. Corrosion inhibition of X80 steel in simulated marine environment with Marinobacter aquaeolei [J]. Acta Metall. Sin. (Eng. Lett.), 2019, 32: 1373
|
| [39] |
Wang J, Du M, Li G N, et al. Research progress on microbiological inhibition of corrosion: A review [J]. J. Clean. Prod., 2022, 373: 133658
|
| [40] |
Stadler R, Fuerbeth W, Harneit K, et al. First evaluation of the applicability of microbial extracellular polymeric substances for corrosion protection of metal substrates [J]. Electrochim. Acta, 2008, 54: 91
|
| [41] |
Suma M S, Basheer R, Sreelekshmy B R, et al. Pseudomonas putida RSS biopassivation of mild steel for long term corrosion inhibition [J]. Int. Biodeter. Biodegr., 2019, 137: 59
|
| [42] |
Daniels R, Vanderleyden J, Michiels J. Quorum sensing and swarming migration in bacteria [J]. FEMS Microbiol. Rev., 2004, 28: 261
|
| [43] |
Stadler R, Wei L, Fürbeth W, et al. Influence of bacterial exopolymers on cell adhesion of Desulfovibrio vulgaris on high alloyed steel: corrosion inhibition by extracellular polymeric substances (EPS) [J]. Mater. Corros., 2010, 61: 1008
|
| [44] |
Lee A K, Buehler M G, Newman D K. Influence of a dual-species biofilm on the corrosion of mild steel [J]. Corros. Sci., 2006, 48: 165
|
| [45] |
Guo Z W, Pan S, Liu T, et al. Bacillus subtilis inhibits Vibrio natriegens-induced corrosion via biomineralization in seawater [J]. Front. Microbiol., 2019, 10: 1111
|
| [46] |
Hao X P, Bai Y, Ren C H, et al. Self-healing effect of damaged coatings via biomineralization by Shewanella putrefaciens [J]. Corros. Sci., 2022, 196: 110067
|
| [47] |
Comensoli L, Albini M, Kooli W, et al. Investigation of biogenic passivating layers on corroded iron [J]. Materials, 2020, 13: 1176
|
| [48] |
Hamadi L, Mansouri S, Oulmi K, et al. The use of amino acids as corrosion inhibitors for metals: A review [J]. Egypt. J. Petrol., 2018, 27: 1157
|
| [49] |
Parthipan P, Sabarinathan D, Angaiah S, et al. Glycolipid biosurfactant as an eco-friendly microbial inhibitor for the corrosion of carbon steel in vulnerable corrosive bacterial strains [J]. J. Mol. Liq., 2018, 261: 473
|
| [50] |
Wang Y L, Guan F, Duan J Z, et al. Synergistic inhibition of rhamnolipid and 2,2-dibromo-3-hypoazopropionamide on microbiologically influenced corrosion of X80 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1412
|
| [50] |
(王娅利, 管 方, 段继周 等. 鼠李糖脂与2,2-二溴-3-次氮基丙酰胺协同抑制X80管线钢的微生物腐蚀 [J]. 中国腐蚀与防护学报, 2024, 44: 1412)
|
| [51] |
Örnek D, Jayaraman A, Syrett B, et al. Pitting corrosion inhibition of aluminum 2024 by Bacillus biofilms secreting polyaspartate or γ-polyglutamate [J]. Appl. Microbiol. Biotechnol., 2002, 58: 651
|
| [52] |
Zin I M, Pokhmurskii V I, Korniy S A, et al. Corrosion inhibition of aluminium alloy by rhamnolipid biosurfactant derived from pseudomonas sp. PS-17 [J]. Anti-Corros. Method. Mater., 2018, 65: 517
|
| [53] |
El-Sheshtawy H S, Aiad I, Osman M E, et al. Production of biosurfactant from Bacillus licheniformis for microbial enhanced oil recovery and inhibition the growth of sulfate reducing bacteria [J]. Egypt. J. Petrol., 2015, 24: 155
|
| [54] |
Purwasena I A, Astuti D I, Fauziyyah N A. Inhibition of microbial influenced corrosion on carbon steel ST37 using biosurfactant produced by Bacillus sp. [J]. Mater. Res. Express, 2019, 6: 115405
|
| [55] |
Padder S A, Prasad R, Shah A H. Quorum sensing: a less known mode of communication among fungi [J]. Microbiol. Res., 2018, 210: 51
|
| [56] |
Xiang Y L, Xiang Y K, Jiao Y R. Simultaneous disintegration of municipal sludge and generation of ethanol with magnetic layered double hydroxides [J]. Bioresource Technol., 2019, 289: 121654
|
| [57] |
Jun J, Li T S, Frankel G S, et al. Corrosion and repassivation of Super 13Cr stainless steel in artificial 1D pit electrodes at elevated temperature [J]. Corros. Sci., 2020, 173: 108754
|
| [58] |
Khan M B, Prezant R S. Microplastic abundances in a mussel bed and ingestion by the ribbed marsh mussel Geukensia demissa [J]. Mar. Pollut. Bull., 2018, 130: 67
|
| [59] |
Liu H W, Fu C Y, Gu T Y, et al. Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water [J]. Corros. Sci., 2015, 100: 484
|
| [60] |
Batmanghelich F, Li L, Seo Y. Influence of multispecies biofilms of Pseudomonas aeruginosa and Desulfovibrio vulgaris on the corrosion of cast iron [J]. Corros. Sci., 2017, 121: 94
|
| [61] |
Korenblum E, Sebastián G V, Paiva M M, et al. Action of antimicrobial substances produced by different oil reservoir Bacillus strains against biofilm formation [J]. Appl. Microbiol. Biotechnol., 2008, 79: 97
|
| [62] |
Volkland H P, Harms H, Knopf K, et al. Corrosion inhibition of mild steel by bacteria [J]. Biofouling, 2000, 15: 287
|
| [63] |
Okyay T O, Rodrigues D F. Optimized carbonate micro-particle production by Sporosarcina pasteurii using response surface methodology [J]. Ecol. Eng., 2014, 62: 168
|
| [64] |
Volkland H P, Harms H, Müller B, et al. Bacterial phosphating of mild (unalloyed) steel [J]. Appl. Environ. Microbiol., 2000, 66: 4389
|
| [65] |
Chekroun K B, Rodríguez-Navarro C, González-Muñoz M T, et al. Precipitation and growth morphology of calcium carbonate induced by Myxococcus xanthus: Implications for recognition of bacterial carbonates [J]. J. Sediment. Res., 2004, 74: 868
|
| [66] |
Joseph E, Cario S, Simon A, et al. Protection of metal artifacts with the formation of metal-oxalates complexes by Beauveria bassiana [J]. Front. Microbiol., 2012, 2: 270
|
| [67] |
Warthmann R, van Lith Y, Vasconcelos C, et al. Bacterially induced dolomite precipitation in anoxic culture experiments [J]. Geology, 2000, 28: 1091
|
| [68] |
Kooli W M, Comensoli L, Maillard J, et al. Bacterial iron reduction and biogenic mineral formation for the stabilisation of corroded iron objects [J]. Sci. Rep., 2018, 8: 764
|
| [69] |
Alabbas F M, Bhola S M, Spear J R, et al. The shielding effect of wild type iron reducing bacterial flora on the corrosion of linepipe steel [J]. Eng. Fail. Anal., 2013, 33: 222
|
| [70] |
Roh Y, Gao H C, Vali H, et al. Metal reduction and iron biomineralization by a psychrotolerant Fe(III)-reducing bacterium, Shewanella sp. strain PV-4 [J]. Appl. Environ. Microbiol., 2006, 72: 3236
|
| [71] |
Chongdar S, Gunasekaran G, Kumar P. Corrosion inhibition of mild steel by aerobic biofilm [J]. Electrochim. Acta, 2005, 50: 4655
|
| [72] |
Hao X P, Bai Y, Lou Y T, et al. Research progress of microbial mineralization impact on inhibits metal corrosion behavior [J]. Surf. Technol., 2021, 50(11): 18
|
| [72] |
(郝湘平, 摆 云, 娄云天 等. 微生物矿化作用抑制金属腐蚀行为的研究进展 [J]. 表面技术, 2021, 50(11): 18)
|
| [73] |
Volkland H P, Harms H, Kaufmann K, et al. Repair of damaged vivianite coatings on mild steel using bacteria [J]. Corros. Sci., 2001, 43: 2135
|
| [74] |
Rangarajan G, Farnood R. Role of persistent free radicals and lewis acid sites in visible-light-driven wet peroxide activation by solid acid biochar catalysts-a mechanistic study [J]. J. Hazard. Mater., 2022, 438: 129514
|
| [75] |
Song B, Weijma J, Buisman C J N, et al. How sulfur species can accelerate the biological immobilization of the toxic selenium oxyanions and promote stable hexagonal Se0 formation [J]. J. Hazard. Mater., 2022, 437: 129367
|
| [76] |
Sun B, Jiang J B, Tao J L, et al. Biomineralization of carbonates induced by Mucilaginibacter gossypii HFF1: Significant role of biochemical parameters [J]. Minerals, 2022, 12: 614
|
| [77] |
Gunasekaran G, Chongdar S, Gaonkar S N, et al. Influence of bacteria on film formation inhibiting corrosion [J]. Corros. Sci., 2004, 46: 1953
|
| [78] |
Li S L, Qu Q, Li L, et al. Bacillus cereus s-EPS as a dual bio-functional corrosion and scale inhibitor in artificial seawater [J]. Water Res., 2019, 166: 115094
|
| [79] |
Bazylinski D A, Frankel R B. Biologically controlled mineralization in prokaryotes [J]. Rev. Mineral. Geochem., 2003, 54: 217
|
| [80] |
Qin W, Wang C Y, Ma Y X, et al. Microbe-mediated extracellular and intracellular mineralization: Environmental, industrial, and biotechnological applications [J]. Adv. Mater., 2022, 34: 2109924
|
| [81] |
Lou Y T, Chang W W, Cui T Y, et al. Microbiologically influenced corrosion inhibition induced by S. putriefaciens mineralization under extracellular polymeric substance regulation via FlrA and FlhG genes [J]. Corros. Sci., 2023, 221: 111350
|
| [82] |
Moradi M, Song Z L, Tao X. Introducing a novel bacterium, Vibrio neocaledonicus sp., with the highest corrosion inhibition efficiency [J]. Electrochem. Commun., 2015, 51: 64
|
| [83] |
Guo Z W, Hui X R, Zhao Q Y, et al. Pigmented Pseudoalteromonas piscicida exhibited dual effects on steel corrosion: Inhibition of uniform corrosion and induction of pitting corrosion [J]. Corros. Sci., 2021, 190: 109687
|
| [84] |
Shen Y Y, Dong Y H, Yang Y, et al. Study of pitting corrosion inhibition effect on aluminum alloy in seawater by biomineralized film [J]. Bioelectrochemistry, 2020, 132: 107408
|
| [85] |
Guo N, Zhao Q Y, Hui X R, et al. Enhanced corrosion protection action of biofilms based on endogenous and exogenous bacterial cellulose [J]. Corros. Sci., 2022, 194: 109931
|
| [86] |
Guo N, Wang Y N, Hui X R, et al. Marine bacteria inhibit corrosion of steel via synergistic biomineralization [J]. J. Mater. Sci. Technol., 2021, 66: 82
|
| [87] |
Ahmadijokani F, Tajahmadi S, Bahi A, et al. Ethylenediamine-functionalized Zr-based MOF for efficient removal of heavy metal ions from water [J]. Chemosphere, 2021, 264: 128466
|
| [88] |
Mohammadi I, Shahrabi T, Mahdavian M, et al. Construction of an epoxy coating with excellent protection performance on the AA 2024-T3 using ion-exchange materials loaded with eco-friendly corrosion inhibitors [J]. Prog. Org. Coat., 2022, 166: 106786
|
| [89] |
Tuck B, Watkin E, Somers A, et al. A critical review of marine biofilms on metallic materials [J]. npj Mater. Degrad., 2022, 6: 25
|
| [90] |
Henriksen K, Stipp S L S, Young J R, et al. Biological control on calcite crystallization: AFM investigation of coccolith polysaccharide function [J]. Am. Mineral., 2004, 89: 1709
|
| [91] |
Liu H W, Gu T Y, Zhang G A, et al. The effect of magneticfield on biomineralization and corrosion behavior of carbon steel induced by iron-oxidizing bacteria [J]. Corros. Sci., 2016, 102: 93
|
| [92] |
Yan H X, Han Z Z, Zhao H, et al. The bio-precipitation of calcium and magnesium ions by free and immobilized Lysinibacillus fusiformis DB1-3 in the wastewate [J]. J. Clean. Prod., 2020, 252: 119826
|
| [93] |
Silva R S, Meneguzzi Á. Passivation of carbon steel using intelligent epoxy paint [J]. Coatings, 2020, 10: 452
|
| [94] |
An Y, Song Y Q, Feng Y F, et al. Research of corrosion behavior of Hydroxy calcium phosphate on the surface of medical magnesium alloy [J]. J. Inn. Mongolia Univ. Sci. Technol., 2016, 35: 50
|
| [94] |
(安 玥, 宋义全, 冯宇飞 等. 医用镁合金沉积羟基磷酸钙的腐蚀性研究 [J]. 内蒙古科技大学学报, 2016, 35: 50)
|
| [95] |
Liu J Y, Zhang X N, Xiao C S, et al. A drug-mineralized hydrogel orchestrated by spontaneous dynamic mineralization [J]. Adv. Funct. Mater., 2023, 34: 2311844
|
| [96] |
Lai H J, Ding X Z, Cui M J, et al. Mechanisms and influencing factors of biomineralization based heavy metal remediation: A review [J]. Biogeotechnics, 2023, 1: 100039
|
| [97] |
Wang L, Li D X, Huang Y W, et al. Bionic mineralized 3D-printed scaffolds with enhanced in situ mineralization for cranial bone regeneration [J]. Adv. Funct. Mater., 2024, 34: 2309042
|
| [98] |
Wang Q B, Karadas Ö, Rosenholm J M, et al. Bioprinting macroporous hydrogel with aqueous two-phase emulsion-based bioink: in Vitro mineralization and differentiation empowered by phosphorylated cellulose nanofibrils [J]. Adv. Funct. Mater., 2024, 34: 2400431
|
| [99] |
Delgado G, Delgado R, Párraga J, et al. Precipitation of carbonates and phosphates by bacteria in extract solutions from a semi-arid saline soil. Influence of Ca2+ and Mg2+ concentrations and Mg2+/Ca2+ molar ratio in biomineralization [J]. Geomicrobiol. J., 2008, 25: 1
|
| [100] |
Ahmed I A M, Young S D, Crout N M J. Ageing and structural effects on the sorption characteristics of Cd2+ by clinoptilolite and Y-type zeolite studied using isotope exchange technique [J]. J. Hazard. Mater., 2010, 184: 574
|
| [101] |
Lu C Y, Diyatmika W, Lou B S, et al. Superimposition of high power impulse and middle frequency magnetron sputtering for fabrication of CrTiBN multicomponent hard coatings [J]. Surf. Coat. Technol., 2018, 350: 962
|
| [102] |
Lan L, Chen S H, Cao Y, et al. Preparation of ceria-zirconia by modified coprecipitation method and its supported Pd-only three-way catalyst [J]. J. Colloid Interf. Sci., 2015, 450: 404
|
| [103] |
Zheng X Y, Shen Y H, Wang X Y, et al. Effect of pH on uranium(VI) biosorption and biomineralization by Saccharomyces cerevisiae [J]. Chemosphere, 2018, 203: 109
|
| [104] |
Zheng Y T, Xiao C Q, Chi R. Remediation of soil cadmium pollution by biomineralization using microbial-induced precipitation: A review [J]. World J. Microb. Biot., 2021, 37: 208
|
| [105] |
Jiang L H, Liu X D, Yin H Q, et al. The utilization of biomineralization technique based on microbial induced phosphate precipitation in remediation of potentially toxic ions contaminated soil: a mini review [J]. Ecotox. Environ. Saf., 2020, 191: 110009
|
| [106] |
Maity J P, Chen G S, Huang Y H, et al. Ecofriendly heavy metal stabilization: microbial induced mineral precipitation (MIMP) and biomineralization for heavy metals within the contaminated soil by indigenous bacteria [J]. Geomicrobiol. J., 2019, 36: 612
|
| [107] |
Wang C L, Hao L L, Sun X T, et al. Response mechanism of psychrotolerant Bacillus cereus D2 towards Ni(II) toxicity and involvement of amino acids in Ni (II) toxicity reduction [J]. J. Hazard. Mater., 2022, 430: 128363
|
| [108] |
Xu H, Chang J L, Wang H, et al. Enhancing direct interspecies electron transfer in syntrophic-methanogenic associations with (semi)conductive iron oxides: Effects and mechanisms [J]. Sci. Total Environ., 2019, 695: 133876
|
| [109] |
Qian H C, Xu D K, Du C W, et al. Dual-action smart coatings with a self-healing superhydrophobic surface and anti-corrosion properties [J]. J. Mater. Chem., 2017, 5A: 2355
|
| [110] |
Ho S H, Zhang C Y, Chen W H, et al. Characterization of biomass waste torrefaction under conventional and microwave heating [J]. Bioresource Technol., 2018, 264: 7
|
| [111] |
Mohan S V, Rao N C, Prasad K K, et al. Bioaugmentation of an anaerobic sequencing batch biofilm reactor (AnSBBR) with immobilized sulphate reducing bacteria (SRB) for the treatment of sulphate bearing chemical wastewater [J]. Process Biochem., 2005, 40: 2849
|
| [112] |
Zhu J M, Marchant R E. Design properties of hydrogel tissue-engineering scaffolds [J]. Expert Rev. Med. Devic., 2011, 8: 607
|
| [113] |
Liu X S, Lian X Y, Wang B Y, et al. Simulation for the correlation of positron annihilation rate with charge density near defects in iron [J]. Nucl. Instrum. Meth. Phys. Res., 2019, 461B: 88
|
| [114] |
Said B M, Eddine K D, Salim C. Artificial neuron network based faults detection and localization in the high voltage transmission lines with mho distance relay [J]. J. Eur. Syst. Autom., 2020, 53: 137
|
| [115] |
Chen G D, Liang X Y, Zhang P, et al. Bioinspired 3D printing of functional materials by harnessing enzyme-induced biomineralization [J]. Adv. Funct. Mater., 2022, 32: 2113262
|
| [116] |
Xu L P, Kang H F, Wei W Y, et al. Freezing, salting‐out and mineralization—a simple, universal and modular strategy for constructing mineralized hydrogels [J]. Adv. Funct. Mater., 2024, 34: 2406367
|
| [117] |
Price P B, Sowers T. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival [J]. Proc. Natl. Acad. Sci. U.S.A., 2004, 101: 4631
|
| [118] |
Del Mundo Dacera D, Babel S. Removal of heavy metals from contaminated sewage sludge using Aspergillus niger fermented raw liquid from pineapple wastes [J]. Bioresource Technol., 2008, 99: 1682
|
| [119] |
Chen M J, Li Y F, Jiang X R, et al. Study on soil physical structure after the bioremediation of Pb pollution using microbial-induced carbonate precipitation methodology [J]. J. Hazard. Mater., 2021, 411: 125103
|
| [120] |
Kim J H, Lee J Y. An optimum condition of MICP indigenous bacteria with contaminated wastes of heavy metal [J]. J. Mater. Cycles Waste Manag., 2019, 21: 239
|
| [121] |
Mitchell A C, Ferris F G. The coprecipitation of Sr into calcite precipitates induced by bacterial ureolysis in artificial groundwater: temperature and kinetic dependence [J]. Geochim. Cosmochim. Acta, 2005, 69: 4199
|
| [122] |
Zhang P, Liu X Q, Yang L Y, et al. Immobilization of Cd2+ and Pb2+ by biomineralization of the carbonate mineralized bacterial consortium JZ1 [J]. Environ. Sci. Pollut. Res., 2023, 30: 22471
|
| [123] |
Kip N, van Veen J A. The dual role of microbes in corrosion [J]. ISME J., 2015, 9: 542
|
| [124] |
Granato A E C, Rodrigues B V M, Rodrigues-Junior D M, et al. Magnetic super-hydrophilic carbon nanotubes/graphene oxide composite as nanocarriers of mesenchymal stem cells: Insights into the time and dose dependences [J]. Mater. Sci. Eng., 2016, 67C: 694
|
| [125] |
Drewello R, Weissmann R. Microbially influenced corrosion of glass [J]. Appl. Microbiol. Biotechnol., 1997, 47: 337
|
| [126] |
Pu Y N, Dou W W, Cheng Y F, et al. Biogenic H2S and extracellular electron transfer resulted in two-coexisting mechanisms in 90/10 Cu-Ni alloy corrosion by a sulfate-reducing bacteria [J]. Corros. Sci., 2023, 211: 110911
|
| [127] |
Dave A, Samarth A, Karolia R, et al. Characterization of ocular clinical isolates of Pseudomonas aeruginosa from non-contact lens related keratitis patients from south India [J]. Microorganisms, 2020, 8: 260
|
| [128] |
Zrimsek A B, Chiang N, Mattei M, et al. Single-molecule chemistry with surface- and tip-enhanced raman spectroscopy [J]. Chem. Rev., 2017, 117: 7583
|
| [129] |
Lei Y, Xu Y, Zeng Q, et al. A novel smart anti-corrosive coating based on the beanpod-inspired microcontainers with self-reporting and self-healing abilities [J]. Prog. Org. Coat., 2025, 198: 108893
|
| [130] |
Li M K, Hu Z S, Liu D, et al. Efficient antibacterial and microbial corrosion resistant photocatalytic coating: Enhancing performance with S-type heterojunction and Cu synergy [J]. Chem. Eng. J., 2024, 495: 153519
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|