Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (5): 1196-1204     CSTR: 32134.14.1005.4537.2024.359      DOI: 10.11902/1005.4537.2024.359
  研究报告 本期目录 | 过刊浏览 |
EIS研究7050铝合金在NaCl溶液空蚀作用下的界面状态与腐蚀机制
夏大海1(), 潘成成1, 郭玉杰1, 胡文彬1, TRIBOLLET Bernard2
1 天津大学材料科学与工程学院 天津 300350
2 Laboratoire Interfaces et Systèmes Electrochimiques (LISE), UMR 8235, CNRS-Sorbonne Université, Paris, France
Electrochemical Impedance Spectroscopy Analysis on Interface State and Corrosion Mechanism of 7050 Al-alloy Subjected to Cavitation Erosion in NaCl Solution
XIA Da-Hai1(), PAN Chengcheng1, GUO Yujie1, HU Wenbin1, TRIBOLLET Bernard2
1 School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
2 Laboratoire Interfaces et Systèmes Electrochimiques (LISE), UMR 8235, CNRS-Sorbonne Université, Paris, France
引用本文:

夏大海, 潘成成, 郭玉杰, 胡文彬, TRIBOLLET Bernard. EIS研究7050铝合金在NaCl溶液空蚀作用下的界面状态与腐蚀机制[J]. 中国腐蚀与防护学报, 2025, 45(5): 1196-1204.
Da-Hai XIA, Chengcheng PAN, Yujie GUO, Wenbin HU, Bernard TRIBOLLET. Electrochemical Impedance Spectroscopy Analysis on Interface State and Corrosion Mechanism of 7050 Al-alloy Subjected to Cavitation Erosion in NaCl Solution[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1196-1204.

全文: PDF(5049 KB)   HTML
摘要: 

空蚀是导致铝合金螺旋桨在海水环境失效的主要原因,厘清铝合金在空蚀作用下的溶解机理对于抑制空蚀十分关键。本文采用电化学阻抗谱(EIS)研究了7050铝合金在空蚀作用下的腐蚀电化学行为,高频区容抗弧与表面氧化膜阻抗和Faraday阻抗有关,中频区扩散阻抗弧与Al3+在Al(OH)3膜中的扩散过程有关,低频区感抗弧与中间产物Alads+有关。从理论上推导出基于动力学模型的Faraday阻抗ZF的表达式。高频区相位角不是常数,空蚀作用下氧化膜的阻抗响应符合Young模型,说明其结构较为疏松,氧化膜内层电阻率约为1010~1011 Ω·cm。此外,其厚度约为0.58~0.96 nm,并随着空蚀时间延长而逐渐降低。

关键词 空蚀电化学阻抗谱Young模型电极过程动力学模型铝合金    
Abstract

Cavitation is the main cause of failure of Al-alloy propellers in seawater environment, and understanding the dissolution mechanism of Al-alloy under cavitation is crucial for suppressing cavitation erosion. Therefore, the electrochemical corrosion behavior of 7050 Al-alloy in conditions of cavitation erosion was studied by means of electrochemical impedance spectroscopy (EIS). Results show that capacitance arc in the high-frequency region is related to the surface oxide film impedance and Faraday impedance, the diffusion impedance arc in the mid frequency region is related to the diffusion process of Al3+ ions in the Al(OH)3 film, and the inductance arc in the low-frequency region is related to the intermediate product Alads+. Then the expression of Faraday impedance ZF based on the kinetic model is deduced theoretically. The phase angle in the high-frequency region is not constant, and the impedance response of the oxide film under cavitation conforms to the Young model, indicating that its structure is relatively loose, and the resistivity of the inner layer of the oxide film is about 1010-1011 Ω·cm. In addition, its thickness is about 0.58-0.96 nm, and gradually decreases with the prolongation of cavitation time.

Key wordscavitation erosion    electrochemical impedance spectroscopy    Young model    kinetic model    Al-alloy
收稿日期: 2024-10-31      32134.14.1005.4537.2024.359
ZTFLH:  TG172  
基金资助:国家自然科学基金(52031007)
通讯作者: 夏大海,E-mail:dahaixia@tju.edu.cn,研究方向为腐蚀科学中的人工智能方法与应用
Corresponding author: XIA Da-Hai, E-mail: dahaixia@tju.edu.cn
作者简介: 夏大海,男,1984年生,博士,副教授
图1  空蚀测试电解池示意图
图2  7050铝合金在3.5%NaCl溶液中空蚀5 min后的空蚀形貌
图3  7050铝合金在3.5%NaCl溶液中自然浸泡和空蚀条件下的极化曲线测试对比结果
图4  7050铝合金在3.5%NaCl溶液中空蚀条件下的电化学阻抗谱测试结果
图5  图4b经欧姆电阻校正后的Bode图
图6  7050铝合金在NaCl溶液中空蚀条件下的电化学等效电路模型
GroupReal gap widthCeff / μF·cm-2Rp / Ω·cm2p / nm
0.5-1 h0.528.95 ± 0.89408 ± 161.14
0.5-2 h0.5510.43 ± 1266.6 ± 110.98
0.5-4 h0.6013.27 ± 1.2128.7 ± 7.80.76
表1  Measurement model 拟合得到的阻抗参数
图7  7050铝合金在3.5%NaCl溶液中空蚀1,2,4 h后表面氧化膜的电阻率分布
图8  Al3+离子在扩散层内的浓度分布曲线
图9  7050铝合金在空蚀条件下测得电化学阻抗谱与非线性回归结果的对比
ParametersUnitt = 1 ht = 2 ht = 4 h
ρ0Ω·cm-11.02 × 10118.74 × 10111.41 × 1012
pnm0.960.7540.58
λnm0.1410.07830.0378
ReΩ·cm29.619.509.50
δcm1.31 × 10-39.01 × 10-41.26 × 10-4
k1mol·cm-2·s-12.36 × 10-41.234 × 10-41.07 × 10-4
b1V-115.8342.5269.56
k2s-11.08 × 10-62.286 × 10-62.67 × 10-6
b2V-19.0640.06124.03
k-2cm·s-12.78 × 10-36.466 × 10-42.973 × 10-4
b-2V-176.11267.29132.67
βmol·cm-28.22 × 10-42.917 × 10-42.543 × 10-4
1-θ-2.25 × 10-64.88 × 10-66.30 × 10-6
CAl3+mol·cm-31.29 × 10-71.00 × 10-71.57 × 10-8
表2  非线性回归拟合得到的参数
[1] Yuan Q, Li N, Li Y J, et al. Corrosion behavior of 316L SS under cavitation condition in simulated seawater [J]. Anti-Corros. Methods Mater., 2023, 70: 18
[2] Ma J K, Hou G L, Cao H B, et al. Why does seawater corrosion significantly inhibit the cavitation erosion damage of nickel-aluminum bronze? [J]. Corros. Sci., 2022, 209: 110700
[3] Cao L F, Qin Z B, Deng Y D, et al. Effect of passive film on cavitation corrosion behavior of 316L stainless steel [J]. Int. J. Electrochem. Sci., 2020, 15: 628
[4] Qin Z B, Cao L F, Deng Y D, et al. Effect of oxide film on the cavitation erosion-corrosion behavior of nickel-aluminum bronze alloy [J]. Corrosion, 2020, 76: 1136
[5] Yu H F, Shao B, Zhang Y, et al. Preparation and properties of Zr-based conversion coating on 2A12 Al-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 101
[5] 于宏飞, 邵 博, 张 悦 等. 2A12铝合金锆基转化膜的制备及性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 101
doi: 10.11902/1005.4537.2020.216
[6] Mao Y C, Zhu Y, Sun S K, et al. Localized corrosion of 5083 Al-alloy in simulated marine splash zone [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 47
[6] 毛英畅, 祝 钰, 孙圣凯 等. 5083铝合金在模拟海洋浪花飞溅区的局部腐蚀行为 [J]. 中国腐蚀与防护学报, 2023, 43: 47
doi: 10.11902/1005.4537.2022.162
[7] Hu J X, Zhang L M, Ma A L, et al. Effect of cavitation intensity on the cavitation erosion behavior of 316L stainless steel in 3.5wt.% NaCl solution [J]. Metals, 2022, 12: 198
[8] Krella A K, Krupa A. Effect of cavitation intensity on degradation of X6CrNiTi18-10 stainless steel [J]. Wear, 2018, 408-409: 180
[9] Wu L, Xu Y T, Ma A L, et al. Influence of pre-immersion aeration conditions on corrosion product films and erosion-corrosion resistance of 90/10 and 70/30 copper-nickel tubes in 1 wt% NaCl solution [J]. Corros. Sci., 2024, 228: 111817
[10] Wang W Y, Zhang W J, Huang G J, et al. Effect of in-situ pre-soaking in seawater on the erosion-corrosion properties and micro-mechanism of nickel aluminium bronze alloy [J]. Corros. Sci., 2024, 228: 111841
[11] Su J X, Bai Y, Guan Q F, et al. Electrochemical impedance spectroscopy analysis of failure of aircraft surface coating [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 251
[11] 苏景新, 白 云, 关庆丰 等. 飞机蒙皮结构表面涂层失效的电化学阻抗分析 [J]. 中国腐蚀与防护学报, 2013, 33: 251
[12] Gu B S, Liu J H. A research on pH during the procession of the cerium(III) film formation of aluminum alloys by EIS [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 124
[12] 顾宝珊, 刘建华. 电化学阻抗谱研究pH值对铝合金表面铈盐转化膜形成过程的影响 [J]. 中国腐蚀与防护学报, 2010, 30: 124
[13] Tribollet B, Vivier V, Orazem M E. EIS technique in passivity studies: determination of the dielectric properties of passive films [A]. Wandelt K. Encyclopedia of Interfacial Chemistry [M]. Oxford: Elsevier, 2018: 93
[14] Nkoua C, Esvan J, Tribollet B, et al. Combined electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy analysis of the passive films formed on 5083 aluminium alloy [J]. Corros. Sci., 2023, 221: 111337
[15] Liao H Q, Watson W, Dizon A, et al. Physical properties obtained from measurement model analysis of impedance measurements [J]. Electrochim. Acta, 2020, 354: 136747
[16] Huet F, Rousseau P, Takenouti H. Simad software for simulating and fitting electrochemical impedances (https://lise-www.sorbonne-universite.fr/en/simad). 2012
[17] Baril G, Galicia G, Deslouis C, et al. An impedance investigation of the mechanism of pure magnesium corrosion in sodium sulfate solutions [J]. J. Electrochem. Soc., 2007, 154: C108
[18] Chen Y M, Nguyen A S, Orazem M E, et al. Identification of resistivity distributions in dielectric layers by measurement model analysis of impedance spectroscopy [J]. Electrochim. Acta, 2016, 219: 312
[19] Wandelt K. Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry [M]. Amsterdam: Elsevier, 2018: 93
[20] Marcus Y. Ions in Solution and Their Solvation [M]. Hoboken: John Wiley & Sons Inc., 2015: 10
[21] Pan C C, Xia D H, Hou M Y, et al. Cavitation erosion of the AA7050 aluminum alloy in 3.5 wt%NaCl solution—Part 1: mitigating effect by corrosion [J]. Corros. Sci., 2024, 232: 112012
[1] 郭玉杰, 李艳辉, 夏大海, 胡文彬. 腐蚀电化学阻抗谱的数据解析与物理模型研究进展[J]. 中国腐蚀与防护学报, 2025, 45(5): 1143-1160.
[2] 何武豪, 刘阳, 杨思懿, 张韶栋, 吴伟, 张俊喜. 敏化处理对传统和增材制造316L不锈钢电化学和晶间腐蚀的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1331-1340.
[3] 胡娜, 彭文山, 郭为民, 刘天楠, 段体岗, 刘少通. 高强铝合金焊接接头力学-电化学腐蚀行为与退化规律研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 965-974.
[4] 丁智超, 张树国, 肖晓春, 汪迪, 李文杰, 姜丽红. 半固态7075铝合金搅拌摩擦焊接头晶间腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 1089-1097.
[5] 雷涛, 陈绍高, 刘秀利, 范金龙, 郑兴文. 乙二醇冷却液的劣化检测及增材制造AlSi10Mg铝合金在其中的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(4): 1014-1024.
[6] 陈宇强, 冉光林, 陆丁丁, 黄磊, 曾立英, 刘阳, 支倩. 循环强化对7075铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1051-1060.
[7] 李丽, 李善文, 史洪微, 梁国平, 李春霖, 孙禹, 秦晋, 王伟, 韩恩厚. 高速列车用铝合金环氧底漆的腐蚀行为和湿热老化机理研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 757-764.
[8] 杜晋, 胡林岚, 孙健, 宋庆华, 陈蒙, 肖金坤. 7075-T6铝合金在3.5%NaCl溶液中的摩擦腐蚀性能研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 803-811.
[9] 宋晓稳, 白苗苗, 陈娜娜, 高逸晖, 冯亚丽, 刘倩倩, 张尧尧, 卢琳, 吴俊升, 肖葵. 海南滨海大气环境中棘孢曲霉对铝合金腐蚀行为影响[J]. 中国腐蚀与防护学报, 2025, 45(3): 631-642.
[10] 陈思雨, 王靖羽, 高立强. 桥梁缆索用高强锌铝合金镀层钢丝在中性盐雾环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 827-836.
[11] 郑文涛, 陆飞雪, 都凯, 王志惠, 贾海龙. 喷丸工艺对7075铝合金板材表面性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(3): 765-772.
[12] 翟熙伟, 刘士一, 王丽, 贾瑞灵, 张慧霞. 载荷对5383铝合金焊接接头电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 515-522.
[13] 王明洋, 夏大海. 高强铝合金氢脆机理研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 261-270.
[14] 翁硕, 孟超, 罗陵华, 袁奕雯, 赵礼辉, 冯金芝. 基于元胞自动机法的AA7075-T651铝合金在力-化学交互作用下腐蚀损伤特征演化规律研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1507-1517.
[15] 王天丛, 赵东杨, 向雪云, 吴航, 王文. 一种环氧耐蚀涂层在NaCl溶液中的劣化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1361-1369.