|
|
|
| CO2 驱采油井复杂环境中N80油管断裂失效机理 |
张德平1, 闫立震2, 于洋1, 杨广明2( ), 代春宇1, 孟乐1, 徐博2,3, 刘智勇2( ) |
1 中国石油天然气股份有限公司吉林油田分公司二氧化碳捕集埋存与提高采收率开发公司 松原 138000 2 北京科技大学新材料技术研究院 教育部腐蚀与防护重点实验室 北京 100083 3 辽宁石油化工大学石油天然气工程学院 辽宁省油气储运技术重点实验室 抚顺 113001 |
|
| Fracture Failure Mechanism of N80 Tubing in Sophisticated CO2 Flooding Production Well Environment |
ZHANG Deping1, YAN Lizhen2, YU Yang1, YANG Guangming2( ), DAI Chunyu1, MEGN Le1, XU Bo2,3, LIU Zhiyong2( ) |
1 Carbon Dioxide Capture Storage and Enhanced Oil Recovery Development Company, Jilin Oilfield Company, China National Petroleum Co. Ltd. , Songyuan 138000, China 2 Key Laboratory for Corrosion and Protection (MOE), Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China 3 Key Laboratory of Oil and Gas Storage and Transportation Technology, College of Petroleum Engineering, Liaoning Petrochemical University, Fushun 113001, China |
引用本文:
张德平, 闫立震, 于洋, 杨广明, 代春宇, 孟乐, 徐博, 刘智勇. CO2 驱采油井复杂环境中N80油管断裂失效机理[J]. 中国腐蚀与防护学报, 2025, 45(6): 1698-1708.
Deping ZHANG,
Lizhen YAN,
Yang YU,
Guangming YANG,
Chunyu DAI,
Le MEGN,
Bo XU,
Zhiyong LIU.
Fracture Failure Mechanism of N80 Tubing in Sophisticated CO2 Flooding Production Well Environment[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1698-1708.
| [1] |
Zhou X, Wang Y C, Zhang L H, et al. Evaluation of enhanced oil recovery potential using gas/water flooding in a tight oil reservoir [J]. Fuel, 2020, 272: 117706
|
| [2] |
Yuan S Y, Ma D S, Li J S, et al. Progress and prospects of carbon dioxide capture, EOR-utilization and storage industrialization [J]. Petrol. Explor. Dev., 2022, 49: 955
|
| [3] |
Kang W L, Zhou B B, Issakhov M, et al. Advances in enhanced oil recovery technologies for low permeability reservoirs [J]. Petrol. Sci., 2022, 19: 1622
|
| [4] |
Yang T, Xu L, Wang J C, et al. Research progress on CO2 corrosion and protective countermeasures for oil casing [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1134
|
| [4] |
(杨 涛, 许 磊, 王建春 等. 油套管CO2腐蚀和防护研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 1134)
|
| [5] |
Wang F, Li Z Q, Zhang D P. New research and practice progresses of CCUS-EOR technology in Jilin oilfield [J]. Nat. Gas Ind., 2024, 44(4): 76
|
| [5] |
(王 峰, 黎政权, 张德平. 吉林油田CCUS-EOR技术攻关与实践新进展 [J]. 天然气工业, 2024, 44(4): 76)
|
| [6] |
Zhang D P, Ma F, Wu Y L, et al. Optimization of injection technique of corrosion inhibitor in CO2-flooding oil recovery [J]. J. Southwest Petrol. Univ. (Sci. Technol. Ed.), 2020, 42(2): 103
|
| [6] |
(张德平, 马 锋, 吴雨乐 等. 用于CO2注气驱的油井缓蚀剂加注工艺优化研究 [J]. 西南石油大学学报(自然科学版), 2020, 42(2): 103)
|
| [7] |
Liu G S, Wang W J, Zhou P, et al. Corrosion behavior of casing steels 13Cr and N80 during sequestration in an impure carbon dioxide environment [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1200
|
| [7] |
(刘广胜, 王卫军, 周 佩 等. 含杂CO2封存条件下13Cr和N80套管钢腐蚀规律研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1200)
|
| [8] |
Yuan Y, Xiang Y, Li C, et al. Research progress on corrosion of CO2 injection well tubing in CCUS system [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 15
|
| [8] |
(原 玉, 向 勇, 李 晨 等. CCUS系统中CO2注入井管材腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 15)
|
| [9] |
Zhang D P. CO2 Flooding enhanced oil recovery technique and its application status [J]. Sci. Technol. Rev., 2011, 29(13): 75
|
| [9] |
(张德平. CO2驱采油技术研究与应用现状 [J]. 科技导报, 2011, 29(13): 75)
|
| [10] |
Li Y Y, Wang Z Z, Zhu G Y, et al. Developing a water chemistry model in the CO2-mixed salts-H2O system to predict the corrosion of carbon steel in supercritical CO2-containing formation water [J]. Corros. Sci., 2021, 192: 109806
|
| [11] |
Zhou Y, Xie F, Wang D, et al. Carbon capture, utilization and storage (CCUS) pipeline steel corrosion failure analysis: A review [J]. Eng. Fail. Anal., 2024, 155: 107745
|
| [12] |
Li D G, Feng Y R, Bai Z Q, et al. Characteristics of CO2 corrosion scale formed on N80 steel in stratum water with saturated CO2 [J]. Appl. Surf. Sci., 2007, 253: 8371
|
| [13] |
Li Y Y, Jiang Z N, Zhang Q H, et al. Unveiling the influential mechanism of O2 on the corrosion of N80 carbon steel under dynamic supercritical CO2 conditions [J]. Corros. Sci., 2022, 205: 110436
|
| [14] |
Cui H Y, Mei P C, Liu Z Y, et al. Effect of CO2 partial pressure on the stress corrosion cracking behavior of N80 tubing steel in the annulus environment of CO2 injection well [J]. Chin. J. Eng., 2020, 42: 1182
|
| [14] |
(崔怀云, 梅鹏程, 刘智勇 等. CO2分压对N80油管钢在CO2驱注井环空环境中应力腐蚀行为的影响 [J]. 工程科学学报, 2020, 42: 1182)
|
| [15] |
Pan Y, Sun B Z, Liu Z Y, et al. Hydrogen effects on passivation and SCC of 2205 DSS in acidified simulated seawater [J]. Corros. Sci., 2022, 208: 110640
|
| [16] |
Cui H Y, Wang L X, Zhang J C, et al. SCC quick-evaluation model of high-strength pipeline steel in the typical external environment [J]. Electrochim. Acta, 2024, 498: 144629
|
| [17] |
Wu W, Sun M H, Chai P L, et al. Failure analysis of a high strength Cr-containing tube used in an oil well [J]. Eng. Fail. Anal., 2023, 150: 107335
|
| [18] |
Zhang X S, Wang S J, Wang X, et al. The stress corrosion cracking behavior of N80 carbon steel under a crevice in an acidic solution containing different concentrations of NaCl [J]. Corros. Sci., 2023, 216: 111068
|
| [19] |
Ma H C, Du C W, Liu Z Y, et al. Stress corrosion behaviors of E690 high-strength steel in SO2-polluted marine atmosphere [J]. Acta Metall. Sin., 2016, 52: 331
|
| [19] |
(马宏驰, 杜翠薇, 刘智勇 等. E690高强钢在SO2污染海洋大气环境中的应力腐蚀行为研究 [J]. 金属学报, 2016, 52: 331)
|
| [20] |
Najjar D, Magnin T, Warner T J. Influence of critical surface defects and localized competition between anodic dissolution and hydrogen effects during stress corrosion cracking of a 7050 aluminium alloy [J]. Mater. Sci. Eng., 1997, 238A: 293
|
| [21] |
API. Casing and tubing [S]. Washington: American Petroleum Institute, 2023
|
| [22] |
Li G X, Wang L W, Wu H L, et al. Dissolution kinetics of the sulfide-oxide complex inclusion and resulting localized corrosion mechanism of X70 steel in deaerated acidic environment [J]. Corros. Sci., 2020, 174: 108815
|
| [23] |
Sun Y T, Tan X, Lan R L, et al. Mechanisms of inclusion-induced pitting of stainless steels: A review [J]. J. Mater. Sci. Technol., 2024, 168: 143
|
| [24] |
Zhang T Y, Li Y L, Li X, et al. Integral effects of Ca and Sb on the corrosion resistance for the high strength low alloy steel in the tropical marine environment [J]. Corros. Sci., 2022, 208: 110708
|
| [25] |
Yang J, Wang Z B, Qiao Y X, et al. Synergistic effects of deposits and sulfate reducing bacteria on the corrosion of carbon steel [J]. Corros. Sci., 2022, 199: 110210
|
| [26] |
Ren X D, Wang H, Wei Q, et al. Electrochemical behaviour of N80 steel in CO2 environment at high temperature and pressure conditions [J]. Corros. Sci., 2021, 189: 109619
|
| [27] |
Bai P P, Zhao H, Zheng S Q, et al. Initiation and developmental stages of steel corrosion in wet H2S environments [J]. Corros. Sci., 2015, 93: 109
|
| [28] |
Tan X, Jiang Y M, Chen Y Q, et al. Roles of different components of complex inclusion in pitting of 321 stainless steel: Induction effect of CaS and inhibition effect of TiN [J]. Corros. Sci., 2022, 209: 110692
|
| [29] |
Jiang Z H, Chen T Q, Che Z C, et al. Effect of Ca-Mg microalloying on corrosion behavior and corrosion resistance of low alloy steel in the marine atmospheric environment [J]. Corros. Sci., 2024, 234: 112134
|
| [30] |
Wang Q Y, Wu W, Li Q, et al. Under-deposit corrosion of tubing served for injection and production wells of CO2 flooding [J]. Eng. Fail. Anal., 2021, 127: 105540
|
| [31] |
Yang G M, Xu C W, Zhang J C, et al. Effect of dissolved oxygen on corrosion behavior and mechanism of X70 pipeline steel in simulated low temperature bentonite-containing alkaline chloride environment [J]. Constr. Build. Mater., 2024, 438: 137170
|
| [32] |
Li Y Z, Guo X P, Zhang G A. Synergistic effect of stress and crevice on the corrosion of N80 carbon steel in the CO2-saturated NaCl solution containing acetic acid [J]. Corros. Sci., 2017, 123: 228
|
| [33] |
Li Y Z, Xu N, Guo X P, et al. The role of acetic acid or H+ in initiating crevice corrosion of N80 carbon steel in CO2-saturated NaCl solution [J]. Corros. Sci., 2017, 128: 9
|
| [34] |
Li Y Z, Xu N, Liu G R, et al. Crevice corrosion of N80 carbon steel in CO2-saturated environment containing acetic acid [J]. Corros. Sci., 2016, 112: 426
|
| [35] |
Yuan G J, Yao Z Q, Wang Q H, et al. Numerical and experimental distribution of temperature and stress fields in API round threaded connection [J]. Eng. Fail. Anal., 2006, 13: 1275
|
| [36] |
Wu W, Liu Z Y, Wang Q Y, et al. Improving the resistance of high-strength steel to SCC in a SO2-polluted marine atmosphere through Nb and Sb microalloying [J]. Corros. Sci., 2020, 170: 108693
|
| [37] |
Xu X X, Wu W, Li N N, et al. Effect of 0.1wt%Nb on the microstructure and corrosion fatigue performance of high strength steels [J]. Corros. Sci., 2023, 219: 111242
|
| [38] |
Li Y, Liu Z Y, Fan E D, et al. Effect of cathodic potential on stress corrosion cracking behavior of different heat-affected zone microstructures of E690 steel in artificial seawater [J]. J. Mater. Sci. Technol., 2021, 64: 141
|
| [39] |
Liu C S, Liu J, Chen C F, et al. Temperature change induce crack mode transition of 316L stainless steel in H2S environment revealed by dislocation configurations [J]. Corros. Sci., 2021, 193: 109896
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|