Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (6): 1698-1708          DOI: 10.11902/1005.4537.2024.409
  研究报告 本期目录 | 过刊浏览 |
CO2 驱采油井复杂环境中N80油管断裂失效机理
张德平1, 闫立震2, 于洋1, 杨广明2(), 代春宇1, 孟乐1, 徐博2,3, 刘智勇2()
1 中国石油天然气股份有限公司吉林油田分公司二氧化碳捕集埋存与提高采收率开发公司 松原 138000
2 北京科技大学新材料技术研究院 教育部腐蚀与防护重点实验室 北京 100083
3 辽宁石油化工大学石油天然气工程学院 辽宁省油气储运技术重点实验室 抚顺 113001
Fracture Failure Mechanism of N80 Tubing in Sophisticated CO2 Flooding Production Well Environment
ZHANG Deping1, YAN Lizhen2, YU Yang1, YANG Guangming2(), DAI Chunyu1, MEGN Le1, XU Bo2,3, LIU Zhiyong2()
1 Carbon Dioxide Capture Storage and Enhanced Oil Recovery Development Company, Jilin Oilfield Company, China National Petroleum Co. Ltd. , Songyuan 138000, China
2 Key Laboratory for Corrosion and Protection (MOE), Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
3 Key Laboratory of Oil and Gas Storage and Transportation Technology, College of Petroleum Engineering, Liaoning Petrochemical University, Fushun 113001, China
引用本文:

张德平, 闫立震, 于洋, 杨广明, 代春宇, 孟乐, 徐博, 刘智勇. CO2 驱采油井复杂环境中N80油管断裂失效机理[J]. 中国腐蚀与防护学报, 2025, 45(6): 1698-1708.
Deping ZHANG, Lizhen YAN, Yang YU, Guangming YANG, Chunyu DAI, Le MEGN, Bo XU, Zhiyong LIU. Fracture Failure Mechanism of N80 Tubing in Sophisticated CO2 Flooding Production Well Environment[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1698-1708.

全文: PDF(24155 KB)   HTML
摘要: 

由于CO2驱采油井腐蚀环境复杂,油管在苛刻的油井环境中出现了较多的腐蚀失效案例。对失效油管进行全面分析有助于阐明失效原因和提出有效的防护措施。本文结合显微组织、力学性能、腐蚀产物和表面形貌等分析,研究了服役在CO2驱采油井中N80油管的失效行为和机理。结果表明,采出油水溶液中高浓度的Cl-、H2S、CO2等和应力的共同作用导致N80油管发生了硫化物应力腐蚀开裂。螺纹接箍处的缝隙内外形成电偶效应引发缝隙腐蚀,与应力的协同作用增加了应力腐蚀开裂敏感性。微裂纹沿螺纹表面应力集中较高的蚀坑内萌生,向内壁扩展。Cl-和硫化物富集在蚀坑底部、裂纹尖端和螺纹底部,为裂纹扩展提供了驱动力。最终裂纹快速穿透管壁,导致N80油管脆性断裂而失效。

关键词 N80油管螺纹缝隙腐蚀硫化物应力腐蚀开裂失效机理    
Abstract

Due to the complex corrosion environment of CO2 flooding production wells, there are many corrosion failure cases of tubing in the harsh oil well environment. A comprehensive analysis of failed tubing is helpful to clarify the causes of failure and propose effective protective measures. In this work, the failure behavior and mechanism of N80 tubing in the CO2 flooding production wells are studied by characterizing their microstructure, mechanical properties, corrosion products and surface morphology. The results show that the sulfide stress corrosion cracking of N80 tubing may be caused by the high concentration of Cl-, H2S, CO2 and other substances in the production well liquids and the combined effect of the existed stresses. Crevice corrosion of tubing may be induced by the galvanic effect in the existed crevices inside and outside of the threaded coupling, of which the synergistic effect with stress can also enhance the stress corrosion cracking susceptibility of tubing. Microcracks initiate in pits with high stress concentration on the thread surface and extend to the inner wall. Cl- and sulfides are enriched at the bottom of the pits, the crack tip and the bottom of the thread, providing a driving force for crack propagation. Finally, the cracks quickly penetrate the pipe wall, resulting in brittle fracture and failure of N80 tubing.

Key wordsN80 tubing    screw thread    crevice corrosion    sulfide stress corrosion cracking    failure mechanism
收稿日期: 2024-12-25     
ZTFLH:  TG172  
基金资助:国家自然科学基金(52071017)
通讯作者: 杨广明,E-mail:D202210739@xs.ustb.edu.cn,研究方向为微合金化高强海工钢腐蚀疲劳机理刘智勇,E-mail:liuzhiyong7804@ustb.edu.cn,研究方向为耐腐蚀断裂材料开发与耐蚀机理
Corresponding author: YANG Guangming, E-mail: D202210739@xs.ustb.edu.cnLIU Zhiyong, E-mail: liuzhiyong7804@ustb.edu.cn
作者简介: 张德平,男,1980年生,高级工程师
图1  发生断裂的N80油管接箍的宏观形貌
图2  失效的N80油管钢的显微组织
图3  N80油管钢表面复合夹杂物的形貌及EDS元素分布图
图4  N80油管钢的应力-应变曲线以及断裂样的光学照片
图5  N80油管断口表面腐蚀产物的微观形貌及成分
图6  N80油管断口侧面的二次裂纹和腐蚀产物的主要元素分布
图7  接箍螺纹底部的锈层截面形貌及主要元素分布
图8  接箍螺纹底部裂纹内腐蚀产物的主要成分
图9  N80油管断口表面除锈后的宏观和微观形貌
图10  N80油管断口侧面的微观形貌
图11  断口侧面二次裂纹的EBSD结果
[1] Zhou X, Wang Y C, Zhang L H, et al. Evaluation of enhanced oil recovery potential using gas/water flooding in a tight oil reservoir [J]. Fuel, 2020, 272: 117706
[2] Yuan S Y, Ma D S, Li J S, et al. Progress and prospects of carbon dioxide capture, EOR-utilization and storage industrialization [J]. Petrol. Explor. Dev., 2022, 49: 955
[3] Kang W L, Zhou B B, Issakhov M, et al. Advances in enhanced oil recovery technologies for low permeability reservoirs [J]. Petrol. Sci., 2022, 19: 1622
[4] Yang T, Xu L, Wang J C, et al. Research progress on CO2 corrosion and protective countermeasures for oil casing [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1134
[4] (杨 涛, 许 磊, 王建春 等. 油套管CO2腐蚀和防护研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 1134)
[5] Wang F, Li Z Q, Zhang D P. New research and practice progresses of CCUS-EOR technology in Jilin oilfield [J]. Nat. Gas Ind., 2024, 44(4): 76
[5] (王 峰, 黎政权, 张德平. 吉林油田CCUS-EOR技术攻关与实践新进展 [J]. 天然气工业, 2024, 44(4): 76)
[6] Zhang D P, Ma F, Wu Y L, et al. Optimization of injection technique of corrosion inhibitor in CO2-flooding oil recovery [J]. J. Southwest Petrol. Univ. (Sci. Technol. Ed.), 2020, 42(2): 103
[6] (张德平, 马 锋, 吴雨乐 等. 用于CO2注气驱的油井缓蚀剂加注工艺优化研究 [J]. 西南石油大学学报(自然科学版), 2020, 42(2): 103)
[7] Liu G S, Wang W J, Zhou P, et al. Corrosion behavior of casing steels 13Cr and N80 during sequestration in an impure carbon dioxide environment [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1200
[7] (刘广胜, 王卫军, 周 佩 等. 含杂CO2封存条件下13Cr和N80套管钢腐蚀规律研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1200)
[8] Yuan Y, Xiang Y, Li C, et al. Research progress on corrosion of CO2 injection well tubing in CCUS system [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 15
[8] (原 玉, 向 勇, 李 晨 等. CCUS系统中CO2注入井管材腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 15)
[9] Zhang D P. CO2 Flooding enhanced oil recovery technique and its application status [J]. Sci. Technol. Rev., 2011, 29(13): 75
[9] (张德平. CO2驱采油技术研究与应用现状 [J]. 科技导报, 2011, 29(13): 75)
[10] Li Y Y, Wang Z Z, Zhu G Y, et al. Developing a water chemistry model in the CO2-mixed salts-H2O system to predict the corrosion of carbon steel in supercritical CO2-containing formation water [J]. Corros. Sci., 2021, 192: 109806
[11] Zhou Y, Xie F, Wang D, et al. Carbon capture, utilization and storage (CCUS) pipeline steel corrosion failure analysis: A review [J]. Eng. Fail. Anal., 2024, 155: 107745
[12] Li D G, Feng Y R, Bai Z Q, et al. Characteristics of CO2 corrosion scale formed on N80 steel in stratum water with saturated CO2 [J]. Appl. Surf. Sci., 2007, 253: 8371
[13] Li Y Y, Jiang Z N, Zhang Q H, et al. Unveiling the influential mechanism of O2 on the corrosion of N80 carbon steel under dynamic supercritical CO2 conditions [J]. Corros. Sci., 2022, 205: 110436
[14] Cui H Y, Mei P C, Liu Z Y, et al. Effect of CO2 partial pressure on the stress corrosion cracking behavior of N80 tubing steel in the annulus environment of CO2 injection well [J]. Chin. J. Eng., 2020, 42: 1182
[14] (崔怀云, 梅鹏程, 刘智勇 等. CO2分压对N80油管钢在CO2驱注井环空环境中应力腐蚀行为的影响 [J]. 工程科学学报, 2020, 42: 1182)
[15] Pan Y, Sun B Z, Liu Z Y, et al. Hydrogen effects on passivation and SCC of 2205 DSS in acidified simulated seawater [J]. Corros. Sci., 2022, 208: 110640
[16] Cui H Y, Wang L X, Zhang J C, et al. SCC quick-evaluation model of high-strength pipeline steel in the typical external environment [J]. Electrochim. Acta, 2024, 498: 144629
[17] Wu W, Sun M H, Chai P L, et al. Failure analysis of a high strength Cr-containing tube used in an oil well [J]. Eng. Fail. Anal., 2023, 150: 107335
[18] Zhang X S, Wang S J, Wang X, et al. The stress corrosion cracking behavior of N80 carbon steel under a crevice in an acidic solution containing different concentrations of NaCl [J]. Corros. Sci., 2023, 216: 111068
[19] Ma H C, Du C W, Liu Z Y, et al. Stress corrosion behaviors of E690 high-strength steel in SO2-polluted marine atmosphere [J]. Acta Metall. Sin., 2016, 52: 331
[19] (马宏驰, 杜翠薇, 刘智勇 等. E690高强钢在SO2污染海洋大气环境中的应力腐蚀行为研究 [J]. 金属学报, 2016, 52: 331)
[20] Najjar D, Magnin T, Warner T J. Influence of critical surface defects and localized competition between anodic dissolution and hydrogen effects during stress corrosion cracking of a 7050 aluminium alloy [J]. Mater. Sci. Eng., 1997, 238A: 293
[21] API. Casing and tubing [S]. Washington: American Petroleum Institute, 2023
[22] Li G X, Wang L W, Wu H L, et al. Dissolution kinetics of the sulfide-oxide complex inclusion and resulting localized corrosion mechanism of X70 steel in deaerated acidic environment [J]. Corros. Sci., 2020, 174: 108815
[23] Sun Y T, Tan X, Lan R L, et al. Mechanisms of inclusion-induced pitting of stainless steels: A review [J]. J. Mater. Sci. Technol., 2024, 168: 143
[24] Zhang T Y, Li Y L, Li X, et al. Integral effects of Ca and Sb on the corrosion resistance for the high strength low alloy steel in the tropical marine environment [J]. Corros. Sci., 2022, 208: 110708
[25] Yang J, Wang Z B, Qiao Y X, et al. Synergistic effects of deposits and sulfate reducing bacteria on the corrosion of carbon steel [J]. Corros. Sci., 2022, 199: 110210
[26] Ren X D, Wang H, Wei Q, et al. Electrochemical behaviour of N80 steel in CO2 environment at high temperature and pressure conditions [J]. Corros. Sci., 2021, 189: 109619
[27] Bai P P, Zhao H, Zheng S Q, et al. Initiation and developmental stages of steel corrosion in wet H2S environments [J]. Corros. Sci., 2015, 93: 109
[28] Tan X, Jiang Y M, Chen Y Q, et al. Roles of different components of complex inclusion in pitting of 321 stainless steel: Induction effect of CaS and inhibition effect of TiN [J]. Corros. Sci., 2022, 209: 110692
[29] Jiang Z H, Chen T Q, Che Z C, et al. Effect of Ca-Mg microalloying on corrosion behavior and corrosion resistance of low alloy steel in the marine atmospheric environment [J]. Corros. Sci., 2024, 234: 112134
[30] Wang Q Y, Wu W, Li Q, et al. Under-deposit corrosion of tubing served for injection and production wells of CO2 flooding [J]. Eng. Fail. Anal., 2021, 127: 105540
[31] Yang G M, Xu C W, Zhang J C, et al. Effect of dissolved oxygen on corrosion behavior and mechanism of X70 pipeline steel in simulated low temperature bentonite-containing alkaline chloride environment [J]. Constr. Build. Mater., 2024, 438: 137170
[32] Li Y Z, Guo X P, Zhang G A. Synergistic effect of stress and crevice on the corrosion of N80 carbon steel in the CO2-saturated NaCl solution containing acetic acid [J]. Corros. Sci., 2017, 123: 228
[33] Li Y Z, Xu N, Guo X P, et al. The role of acetic acid or H+ in initiating crevice corrosion of N80 carbon steel in CO2-saturated NaCl solution [J]. Corros. Sci., 2017, 128: 9
[34] Li Y Z, Xu N, Liu G R, et al. Crevice corrosion of N80 carbon steel in CO2-saturated environment containing acetic acid [J]. Corros. Sci., 2016, 112: 426
[35] Yuan G J, Yao Z Q, Wang Q H, et al. Numerical and experimental distribution of temperature and stress fields in API round threaded connection [J]. Eng. Fail. Anal., 2006, 13: 1275
[36] Wu W, Liu Z Y, Wang Q Y, et al. Improving the resistance of high-strength steel to SCC in a SO2-polluted marine atmosphere through Nb and Sb microalloying [J]. Corros. Sci., 2020, 170: 108693
[37] Xu X X, Wu W, Li N N, et al. Effect of 0.1wt%Nb on the microstructure and corrosion fatigue performance of high strength steels [J]. Corros. Sci., 2023, 219: 111242
[38] Li Y, Liu Z Y, Fan E D, et al. Effect of cathodic potential on stress corrosion cracking behavior of different heat-affected zone microstructures of E690 steel in artificial seawater [J]. J. Mater. Sci. Technol., 2021, 64: 141
[39] Liu C S, Liu J, Chen C F, et al. Temperature change induce crack mode transition of 316L stainless steel in H2S environment revealed by dislocation configurations [J]. Corros. Sci., 2021, 193: 109896
[1] 孙欣蕾, 曹京宜, 殷文昌, 方志刚, 王峰, 王兴奇, 杨延格. 高温高湿环境下玻璃纤维增强乙烯基酯复合材料的失效行为研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1679-1688.
[2] 汤熠鑫, 张飞, 崔中雨, 崔洪芝, 李燚周. 氢对2205双相不锈钢在3.5%NaCl溶液中缝隙腐蚀行为影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 431-437.
[3] 许志昱, 胡骞, 黄峰, 刘静, 卢献忠. 缝隙几何尺寸对闭塞区化学环境及腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1581-1588.
[4] 韩宇龙, 李健, 郭丽雅, 杨边疆, 陆恒昌, 韦习成, 董瀚. 螺纹钢中MnS夹杂物诱发的局部腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(5): 1255-1262.
[5] 刘久云, 董立谨, 张言, 王勤英, 刘丽. 油气田异种金属焊接接头硫化物应力腐蚀开裂研究进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 863-873.
[6] 乔泽, 李清泉, 刘晓航, 李燚周. 中性氯化钠溶液中硝酸根和电偶对7075-T651铝合金缝隙腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1047-1054.
[7] 原玉, 向勇, 李晨, 赵雪会, 闫伟, 姚二冬. CCUS系统中CO2 注入井管材腐蚀研究进展[J]. 中国腐蚀与防护学报, 2024, 44(1): 15-26.
[8] 吕正平, 李缘, 刘晓航, 崔中雨, 崔洪芝, 王昕, 逄昆, 李燚周. 酸性氯化钠溶液中硝酸钠和硫脲对7075铝合金缝隙腐蚀的协同缓蚀作用[J]. 中国腐蚀与防护学报, 2023, 43(6): 1367-1374.
[9] 李敏, 胡凌越, 胡科峰, 宋遥, 张泽群, 李宗欣, 张博威, 董超芳, 吴俊升. 316L不锈钢在深海环境中的缝隙腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1375-1382.
[10] 王长罡, DANIEL Enobong Felix, 李超, 董俊华, 杨华, 张东玖. 海洋环境中碳钢和不锈钢螺栓紧固件的腐蚀机制差异研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[11] 白一涵, 张航, 朱泽洁, 王疆瑛, 曹发和. 缝隙腐蚀内部微区离子浓度监测的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 828-836.
[12] 赵柏杰, 范益, 李镇镇, 张博威, 程学群. 不同类型接触面对316L不锈钢缝隙腐蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[13] 王长罡,魏洁,魏欣,穆鑫,薛芳,董俊华,柯伟,李国平. 几种超级不锈钢在模拟烟气脱硫环境中的缝隙腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 43-50.
[14] 史显波, 王威, 严伟, 单以银, 杨柯. M/A组元对高强度管线钢抗H2S性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 129-136.
[15] 陈东旭, 吴欣强, 韩恩厚. 缝隙腐蚀研究进展及核电材料的缝隙腐蚀问题[J]. 中国腐蚀与防护学报, 2014, 34(4): 295-300.