|
|
表面粗糙度以及NaOH溶液的浓度和温度对锆基非晶合金腐蚀行为的影响 |
王涛涛1, 薛荣洁1( ), 马晓伟1, 万皓锋1, 王冬朋2, 刘珍光2 |
1 江苏理工学院材料工程学院 常州 213001 2 江苏科技大学材料科学与工程学院 镇江 212100 |
|
Effect of Surface Roughness, Concentration and Temperature of NaOH Solution on Corrosion Behavior of a Zr-based Metallic Glass |
WANG Taotao1, XUE Rongjie1( ), MA Xiaowei1, WAN Haofeng1, WANG Dongpeng2, LIU Zhenguang2 |
1 School of Materials Engineering, Jiangsu Institute of Technology, Changzhou 213001, China 2 School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China |
引用本文:
王涛涛, 薛荣洁, 马晓伟, 万皓锋, 王冬朋, 刘珍光. 表面粗糙度以及NaOH溶液的浓度和温度对锆基非晶合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1253-1264.
Taotao WANG,
Rongjie XUE,
Xiaowei MA,
Haofeng WAN,
Dongpeng WANG,
Zhenguang LIU.
Effect of Surface Roughness, Concentration and Temperature of NaOH Solution on Corrosion Behavior of a Zr-based Metallic Glass[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1253-1264.
[1] |
Ding S B, Xiang T F, Li C, et al. Fabrication of self-cleaning super-hydrophobic nickel/graphene hybrid film with improved corrosion resistance on mild steel [J]. Mater. Design, 2017, 117: 280
|
[2] |
Chen Y. Corrosion of buried metal pipelines in alkaline soil media [J]. Oil-Gas Fields Surf. Eng., 2014, 33(9): 92
|
[2] |
陈 宇. 埋地金属管道在碱性土壤介质中的腐蚀 [J]. 油气田地面工程, 2014, 33(9): 92
|
[3] |
Islam J, Anwar R, Shareef M, et al. Rechargeable metal-metal alkaline batteries: recent advances, current issues and future research strategies [J]. J. Power Sources, 2023, 563: 232777
|
[4] |
Tang H M, Zhan C, Li Q, et al. Design and performance of molybdenum-cobalt-vanadium polymetallic composite materials for hydrogen production by alkaline water electrolysis [J]. Energy Res. Manag., 2024, 16(2): 43
|
[4] |
唐红梅, 詹 聪, 李 琴 等. 钼-钴-钒多金属复合材料设计及碱性电解水制氢性能 [J]. 能源研究与管理, 2024, 16(2): 43
|
[5] |
Liu M M, Fan X F, Cui X Q, et al. Noble metal-modified copper surfaces for alkaline condition hydrogen evolution reaction [J]. J. Alloy. Compd., 2024, 1005: 175966
|
[6] |
Esfandiari N, Aliofkhazraei M, Colli A N, et al. Metal-based cathodes for hydrogen production by alkaline water electrolysis: review of materials, degradation mechanism, and durability tests [J]. Prog. Mater. Sci., 2024, 144: 101254
|
[7] |
Sun X. Design and electrochemical corrosion behavior of Zr-Ti-Ni-Cu-Be high entropy bulk metallic glasses [D]. Qingdao: China University of Petroleum (East China), 2019
|
[7] |
孙 旭. Zr-Ti-Ni-Cu-Be系高熵非晶合金设计及电化学腐蚀行为 [D]. 青岛: 中国石油大学(华东), 2019
|
[8] |
He Z C, Qin T N, Ding Y, et al. Investigation of the corrosion resistance of alkaline electroless nickel plating on aluminum alloy [J]. Light Alloy Fabricat. Technol., 2009, 37(3): 44
|
[8] |
贺忠臣, 秦铁男, 丁 毅 等. 6063铝合金碱性化学镀镍耐腐蚀性能研究 [J]. 轻合金加工技术, 2009, 37(3): 44
|
[9] |
Chen L, Li X. Electrochemical corrosion properties of Cu72Sn10-P10Ni8 amorphous ribbon [J]. Mater. Mech. Eng., 2015, 39(9): 53
|
[9] |
陈 琳, 李 翔. Cu72Sn10P10Ni8非晶薄带的电化学腐蚀性能 [J]. 机械工程材料, 2015, 39(9): 53
|
[10] |
Suo Z Y, Gong A H, Wang X, et al. Corrosion behavior of Ti-Zr based bulk amorphous alloys in NaOH solution [J]. Met. Funct. Mater., 2016, 23(3): 42
|
[10] |
索忠源, 龚安华, 王 鑫 等. Ti-Zr基块体非晶合金在NaOH溶液中的腐蚀研究 [J]. 金属功能材料, 2016, 23(3): 42
doi: 10.13228/j.boyuan.issn1005-8192.2015088
|
[11] |
Xue R J, Zhao L Z, Cai Y Q, et al. Correlation between boson peak and thermal expansion manifested by physical aging and high pressure [J]. Sci. China Phys. Mech. Astron., 2022, 65: 246111
|
[12] |
Nan D, Dong J H. Influence of temperature on corrosion behavior of five kinds of metal in thick alkali solution [J]. Chlor-Alkali Ind., 2007, (9): 40
|
[12] |
楠 顶, 董俊慧. 温度对5种金属在浓碱中腐蚀行为的影响 [J]. 氯碱工业, 2007, (9): 40
|
[13] |
Zhao T L, Lu W, Lü H W, et al. Electrochemical corrosion behavior of 10# carbon steel in NaOH solution [J]. Corros. Prot., 2018, 39: 833
|
[13] |
赵天雷, 路 伟, 吕海武 等. 10号碳钢在NaOH溶液中的腐蚀电化学行为 [J]. 腐蚀与防护, 2018, 39: 833
|
[14] |
Kisasoz A. Corrosion behavior of alloy AA6063-T4 in HCl and NaOH solutions [J]. Mater. Test., 2018, 60: 478
|
[15] |
Zhang Z Y, Long Y, Ye R C, et al. Effect of inhibitors on corrosion of gadolinium in water [J]. J. Chin. Soc. Rare Earths, 2005, 23: 400
|
[15] |
张泽玉, 龙 毅, 叶荣昌 等. 缓蚀剂对金属钆在水介质中腐蚀行为的影响 [J]. 中国稀土学报, 2005, 23: 400
|
[16] |
Li F X. Studies on the structural relaxation and corrosion behavior of a Zr-based bulk metall glass [D]. Zhengzhou: Zhengzhou University, 2014
|
[16] |
李凤鲜. Zr基金属玻璃的结构弛豫和腐蚀行为研究 [D]. 郑州: 郑州大学, 2014
|
[17] |
Kim H G, Jang H J. Electrochemical corrosion behaviors of amorphous Co69Fe4.5Ni1.5Si10B15 alloy [J]. Met. Mater. Int., 2011, 17: 783
|
[18] |
Wang L, Chao Y S. Corrosion behaviors of bulk amorphous Fe41Co7Cr15Mo14C15B6Y2 alloy in NaOH solution [J]. J. Funct. Mater., 2010, 41: 1849
|
[18] |
王 莉, 晁月盛. 铁基块体非晶合金在NaOH溶液中的腐蚀行为 [J]. 功能材料, 2010, 41: 1849
|
[19] |
Jiang H R, Bochtler B, Frey M, et al. Equilibrium viscosity and structural change in the Cu47.5Zr45.1Al7.4 bulk glass-forming liquid [J]. Acta Mater., 2020, 184: 69
|
[20] |
Zhang C, Li X M, Liu S Q, et al. 3D printing of Zr-based bulk metallic glasses and components for potential biomedical applications [J]. J. Alloy. Compd., 2019, 790: 963
|
[21] |
Xue R J, Zhao L Z, Yi J J. Strain aging in metallic glasses [J]. Mater. Lett., 2022, 306: 130931
|
[22] |
Ma X W, Xue R J, Wang T T, et al. Comparison of corrosion resistance of Zr-based amorphous alloys and traditional alloys in seawater [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 949
|
[22] |
马晓伟, 薛荣洁, 王涛涛 等. 锆基非晶合金与传统合金在海水中的耐腐蚀性能对比研究 [J]. 中国腐蚀与防护学报, 2024, 44: 949
doi: 10.11902/1005.4537.2023.297
|
[23] |
Jiang J, Wang Z B, Zheng Y G, et al. Effect of oxygen impurity on corrosion behavior of a Zr-based bulk metallic glass in 0.5 M H2SO4 and 0.5 M NaOH solutions [J]. Mater. Lett., 2023, 330: 133231
|
[24] |
Tang J N, Zhang Z Y, Lin Y J, et al. Corrosion behaviors of Zr-based metallic glass Zr0.55Cu0.30Al0.10Ni0.05)99Y1 [J]. Special Cast. Nonferrous Alloy., 2018, 38: 1145
|
[24] |
汤迦南, 张志英, 林耀军 等. (Zr0.55Cu0.30Al0.10Ni0.05)99Y1非晶合金的腐蚀行为 [J]. 特种铸造及有色合金, 2018, 38: 1145
doi: 10.15980/j.tzzz.2018.10.027
|
[25] |
Wang C, Zhang Q S, Jiang F, et al. Corrosion behavior of Zr55Al10Cu30Ni5 amorphous alloy in NaOH solution [J]. Rare Met. Mater. Eng., 2003, 32: 814
|
[25] |
王 成, 张庆生, 江 峰 等. Zr55Al10Cu30Ni5非晶合金在NaOH溶液中的腐蚀行为 [J]. 稀有金属材料与工程, 2003, 32: 814
|
[26] |
Huang J S, Liu Y, Chen S Q, et al. Progress and application of Zr-based amorphous alloys [J]. Chin. J. Nonferrous Met., 2003, 13: 1321
|
[26] |
黄劲松, 刘 咏, 陈仕奇 等. 锆基非晶合金的研究进展与应用 [J]. 中国有色金属学报, 2003, 13: 1321
|
[27] |
Zhao B W. Behavior and mechanism of catalytic degradation of dyes by CuZr-based metallic glasses and derivative nanocomposites [D]. Hefei: University of Science and Technology of China, 2022
|
[27] |
赵博文. CuZr基非晶合金及衍生纳米复合物催化降解染料的行为与机制研究 [D]. 合肥: 中国科学技术大学, 2022
|
[28] |
Duan Y G, Ding Y Q, Zhang L, et al. Biocompatibility of Ti35-Nb3Zr2Ta, a new beta-titanium alloy, as joint prosthesis material [J]. Chin. J. Tissue Eng. Res., 2015, 19: 5536
|
[28] |
段永刚, 丁英奇, 张 龙 等. 新型β钛合金Ti35N3Zr2Ta在人工关节假体应用中的生物相容性 [J]. 中国组织工程研究, 2015, 19: 5536
|
[29] |
Tiwari K, Blanquer A, Pavan C, et al. Surface modification of Ti40Cu40Zr11Fe3Sn3Ag3 amorphous alloy for enhanced biocompatibility in implant applications [J]. J. Mater. Res. Technol., 2024, 30: 2333
|
[30] |
Cui H L, Zhao H. Inorganic Chemistry [M]. Xi'an: Fourth Military Medical University Press, 2007: 64
|
[30] |
崔华良, 赵 华. 无机化学 [M]. 西安: 第四军医大学出版社, 2007: 64
|
[31] |
Huang Y J, Guo Y Z, Fan H B, et al. Synthesis of Fe-Cr-Mo-C-B amorphous coating with high corrosion resistance [J]. Mater. Lett., 2012, 89: 229
|
[32] |
Xu S M, Liu H, Wu X, et al. Study of conductivity characteristics of ternary solutions KI/LiCl/LiBr-water-ethanol [J]. J. Dalian Univ. Technol., 2017, 57: 23
|
[32] |
徐士鸣, 刘 欢, 吴 曦 等. KI/LiCl/LiBr-水-乙醇三元体系电导率特性研究 [J]. 大连理工大学学报, 2017, 57: 23
|
[33] |
Jensen F. Activation energies and the Arrhenius equation [J]. Qual. Reliab. Eng. Int., 1985, 1(1): 13
|
[34] |
Chen L M, Cheng M X, Xiao X F, et al. Measurement of the relationship between conductivity of salt solution and concentration and temperature [J]. Lab. Res. Explor., 2010, 29(5): 39
|
[34] |
陈丽梅, 程敏熙, 肖晓芳 等. 盐溶液电导率与浓度和温度的关系测量 [J]. 实验室研究与探索, 2010, 29(5): 39
|
[35] |
Ye F X, Yao J, Liu Y F, et al. Erosion corrosion characteristics of X80 pipeline steel in two-phase flow under the influence of multiple factors [J]. Chem. Ind. Eng. Progress, 2021, 40: 6450
|
[35] |
叶福相, 姚 军, 刘玉发 等. 多因素影响下的X80管道钢两相流冲蚀腐蚀特性 [J]. 化工进展, 2021, 40: 6450
doi: 10.16085/j.issn.1000-6613.2021-1370
|
[36] |
Pan Y, Wu C R, Chen S W, et al. Research progress of oxygen reduction catalytic materials and catalytic active sites [J]. Mater. Rep., 2019, 33(suppl. 1) : 41
|
[36] |
潘 云, 吴承仁, 陈绍维 等. 氧还原催化材料与催化机理及活性位点的研究进展 [J]. 材料导报, 2019, 33(): 41
|
[37] |
Ding G Q, Li X Y, Zhang B, et al. Variation of free corrosion potential of several metallic materials in natural seawater [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 543
|
[37] |
丁国清, 李向阳, 张 波 等. 金属材料在天然海水中的腐蚀电位及其变化规律 [J]. 中国腐蚀与防护学报, 2019, 39: 543
doi: 10.11902/1005.4537.2019.233
|
[38] |
Jia B L, Cao F H, Liu W J, et al. Review on electrochemical detection techniques for corrosion of reinforcing steel in concrete [J]. J. Chin. Mater. Sci. Eng., 2010, 28: 791
|
[38] |
贾丙丽, 曹发和, 刘文娟 等. 钢筋混凝土腐蚀的电化学检测研究现状 [J]. 材料科学与工程学报, 2010, 28: 791
|
[39] |
Dai C D, Fu Y, Guo J X, et al. Effects of substrate temperature and deposition time on the morphology and corrosion resistance of FeCoCrNiMo0.3 high-entropy alloy coating fabricated by magnetron sputtering [J]. Int. J. Miner. Metall. Mater., 2020, 27: 1388
|
[40] |
Hu J F, Xie C X, Tao P J. Effect of structural state on corrosion properties of all metal Fe based amorphous alloys [J]. Mater. Rep., 2022, 36(suppl. 1) : 360
|
[40] |
胡家富, 谢春晓, 陶平均. 结构状态对全金属Fe基非晶合金腐蚀性能的影响 [J]. 材料导报, 2022, 36(): 360
|
[41] |
Wang D P, Li X, Chen Z. et al. Susceptibility of chloride ion concentration, temperature, and surface roughness on pitting corrosion of CoCrFeNi medium-entropy alloy [J]. Mater. Corros., 2021, 73: 106
|
[42] |
Zhong P, Shi Z Q, Wang Y F, et al. Electrochemical corrosion performance of Zr2TiCuNiBe high-entropy metallic glass [J]. J. Netshape Forming Eng., 2023, 15(5): 139
|
[42] |
钟 鹏, 石志强, 王彦芳 等. Zr2TiCuNiBe高熵非晶合金的电化学腐蚀行为 [J]. 精密成形工程, 2023, 15(5): 139
|
[43] |
Zhang W, Cao W K, Yang J L. Effects of temperature and chloride ion concentration on electrochemical corrosion of Cr13 tubing in completion fluid [J]. Corros. Prot. Petrochem. Ind., 2023, 40(4): 1
|
[43] |
张 伟, 曹文凯, 阳俊龙. 温度和Cl-浓度对完井液中Cr13油管的电化学腐蚀的影响 [J]. 石油化工腐蚀与防护, 2023, 40(4): 1
|
[44] |
Song Y L, Suo Z Y, Ma C J, et al. Glass forming ability and corrosion behavior of Ti-Zr-Be-Cu-Co bulk metallic glass [J]. Rare Met. Mater. Eng., 2013, 42: 2127
|
[44] |
宋艳玲, 索忠源, 马长捷 等. Ti-Zr-Be-Cu-Co块体非晶合金形成能力及其耐蚀性的研究 [J]. 稀有金属材料与工程, 2013, 42: 2127
|
[45] |
Liao C H, Zhou J, Shen H. Electrochemical corrosion behaviors before and after laser polishing of additive manufactured TC4 titanium alloy [J]. Chin. J. Lasers, 2020, 47: 0102003
|
[45] |
廖聪豪, 周 静, 沈 洪. 增材制造TC4钛合金在激光抛光前后的电化学腐蚀性能 [J]. 中国激光, 2020, 47: 0102003
|
[46] |
Li G Q, Zheng L J, Li H X. Corrosion behavior of the bulk amorphous Mg65Cu25Gd10 alloy [J]. Rare Met. Mater. Eng., 2009, 38: 110
|
[46] |
李国强, 郑立静, 李焕喜. Mg65Cu25Gd10非晶合金的腐蚀行为 [J]. 稀有金属材料与工程, 2009, 38: 110
|
[47] |
Shang S Z, Kong M L, Li Y. Corrsion behavior of Zr53.5Cu26.5Ni5-Al12Ag3 bulk metallic glass in NaOH [J]. J. Shenyang Inst. Chem. Technol., 2012, 26: 199
|
[47] |
尚世智, 孔美玲, 李 云. 锆基非晶合金在NaOH溶液中的腐蚀行为 [J]. 沈阳化工大学学报, 2012, 26: 199
|
[48] |
Li L H, Yang J, Li H Y. Quantifying the microstructure and phase assemblage of alkali-activated fly ash/slag materials by EDS mapping analysis [J]. Mater. Design, 2023, 234: 112320
|
[49] |
Guan P F, Wang B, Wu Y C, et al. Heterogeneity: The soul of metallic glasses [J]. Acta Phys. Sin., 2017, 66: 176112
|
[49] |
管鹏飞, 王 兵, 吴义成 等. 不均匀性: 非晶合金的灵魂 [J]. 物理学报, 2017, 66: 176112
|
[50] |
Liang T, Yan R. Anti-Chemical Detergent Equipment Corrosion and Protection [M]. Beijing: Publishing House of Electronics Industry, 2010
|
[50] |
梁 婷, 阎 瑞. 防化洗消装备腐蚀与防护 [M]. 北京: 电子工业出版社, 2010
|
[51] |
Qin W, Nam C, Li H L, et al. Tetragonal phase stability in ZrO2 film formed on zirconium alloys and its effects on corrosion resistance [J]. Acta Mater., 2007, 55: 1695
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|