Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (5): 1253-1264     CSTR: 32134.14.1005.4537.2024.408      DOI: 10.11902/1005.4537.2024.408
  研究报告 本期目录 | 过刊浏览 |
表面粗糙度以及NaOH溶液的浓度和温度对锆基非晶合金腐蚀行为的影响
王涛涛1, 薛荣洁1(), 马晓伟1, 万皓锋1, 王冬朋2, 刘珍光2
1 江苏理工学院材料工程学院 常州 213001
2 江苏科技大学材料科学与工程学院 镇江 212100
Effect of Surface Roughness, Concentration and Temperature of NaOH Solution on Corrosion Behavior of a Zr-based Metallic Glass
WANG Taotao1, XUE Rongjie1(), MA Xiaowei1, WAN Haofeng1, WANG Dongpeng2, LIU Zhenguang2
1 School of Materials Engineering, Jiangsu Institute of Technology, Changzhou 213001, China
2 School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
引用本文:

王涛涛, 薛荣洁, 马晓伟, 万皓锋, 王冬朋, 刘珍光. 表面粗糙度以及NaOH溶液的浓度和温度对锆基非晶合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1253-1264.
Taotao WANG, Rongjie XUE, Xiaowei MA, Haofeng WAN, Dongpeng WANG, Zhenguang LIU. Effect of Surface Roughness, Concentration and Temperature of NaOH Solution on Corrosion Behavior of a Zr-based Metallic Glass[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1253-1264.

全文: PDF(12540 KB)   HTML
摘要: 

通过自然浸泡失重法、电化学技术和扫描电镜(SEM/EDS)等手段,研究了温度、浓度、粗糙度及自然浸泡对Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit1)非晶合金在NaOH溶液中耐蚀性的影响。结果表明,Vit1在0.1 mol/L的NaOH溶液中的自然腐蚀速率是0.01 mol/L的NaOH溶液中的1.22倍。随着温度、浓度和粗糙度增加,Vit1的自腐蚀电流密度变大,阻抗变小,耐蚀性下降,表面生成的ZrO2、TiO2、NiO、CuO基底氧化物和Be(OH)2腐蚀产物增多,腐蚀产物覆盖面积增大。温度升高,分子和离子的活动能力增强,更易发生化学反应,促进合金溶解和腐蚀。高浓度的NaOH,腐蚀速率加快,是由于高浓度碱性溶液中的OH-能更有效地与非晶合金表面发生反应,从而加快腐蚀。粗糙度增加,参与腐蚀反应的表面暴露有效面积增大,腐蚀反应速率加快。浸泡处理后,腐蚀液在合金表面积累,导致局部浓度增加,这些局部浓度差异导致腐蚀的不均匀性,产生腐蚀疤痕。

关键词 锆基非晶合金电化学NaOH溶液腐蚀性能    
Abstract

The effect of temperature and concentration of NaOH solution, as well as the roughness of material on the electrochemical properties of a Zr-based metallic glass in NaOH solution were studied by means of mass loss measurement, electrochemical technology and scanning electron microscopy (SEM/EDS). The free corrosion rate of Zr-based metallic glass in 0.1 mol/L NaOH is 1.22 times that in 0.01 mol/L NaOH solution. With the increase of temperature, concentration and roughness, the Icorr of Zr-based metallic glass increases, the impedance and the corrosion resistance decrease. The corrosion products on the surface of Zr-based metallic glass increased, and the product corroded area increased. ZrO2, TiO2, NiO, CuO substrate oxides and Be(OH)2 corrosion products were formed on the surface of Vit1 after corrosion. As the temperature increases, the mobility of molecules and ions increases, making chemical reactions more likely to occur, and accelerating the dissolution and corrosion of metallic glasses. The increase of NaOH concentration and the acceleration of corrosion rate may be due to the fact that hydroxide ions (OH-) in highly concentrated alkaline solutions can react more effectively with the surface of metallic glasses, thereby accelerating corrosion. With the increase of roughness, the effective area of surface exposure involved in the corrosion reaction increases, and the corrosion reaction rate accelerates. After immersion, corrosion fluids accumulate on the surface of the alloy, resulting in an increase in local concentration differences, which lead to non-uniform corrosion and corrosion scarring.

Key wordsZr-based metallic glass    electrochemistry    NaOH solution    corrosion property
收稿日期: 2024-12-25      32134.14.1005.4537.2024.408
ZTFLH:  TG172.5  
基金资助:国家自然科学基金(51801083);江苏省大学生创新创业训练计划(202411463092Y)
通讯作者: 薛荣洁,E-mail:xuerongjie@jsut.edu.cn,研究方向为非晶合金和高熵合金
Corresponding author: XUE Rongjie, E-mail: xuerongjie@jsut.edu.cn
作者简介: 王涛涛,男,2000年生,硕士生
图1  Vit1在0.01、0.1 mol/L NaOH溶液中浸泡648 h的失重率和腐蚀速率
图2  不同表面粗糙度的Vit1样品在不同条件的NaOH溶液浸泡后的动电位极化曲线
Experiment conditionsIcorr / A·cm-2Ecorr / mVRs / kΩ·cm2Rct / kΩ·cm2CPE / μF·cm2α
1: 0.01 mol/L-25 ℃2.6 × 10-9-3740.4025322.704.02280.91285
2: 0.01 mol/L-35 ℃3.6 × 10-9-3330.7885154.703.93630.90021
3: 0.1 mol/L-25 ℃9.3 × 10-9-3070.0402132.706.68470.90352
4: 0.1 mol/L-35 ℃1.13 × 10-8-1460.033517.727.17760.89177
5: IC 0.01 mol/L-25 ℃6.2 × 10-9-3710.220365.549.66450.90692
6: IC 0.01 mol/L-35 ℃8.1 × 10-9-1250.170211.8011.0130.91269
7: IC 0.1 mol/L-25 ℃8.35 × 10-8-2230.027201.1810.540.93691
8: IC 0.1 mol/L-35 ℃9.12 × 10-8-2300.031142.476.80360.93684
9: 0.01 mol/L-180#3.16 × 10-7-6020.263417.157.00380.87587
10: 0.01 mol/L-400#2.76 × 10-7-4710.008454.496.16130.94270
11: 0.01 mol/L-1200#1.54 × 10-7-4300.272494.228.58450.89133
12: 0.01 mol/L-3000#5.93 × 10-8-2710.060525.494.16020.93659
13: 0.01 mol/L-5000#3.29 × 10-8-4730.060647.695.18290.86688
14: 0.1 mol/L-180#4.05 × 10-7-4630.054222.779.18760.91008
15: 0.1 mol/L-400#3.00 × 10-7-4300.484256.695.85580.93849
16: 0.1 mol/L-1200#2.05 × 10-7-3400.051291.745.05110.92293
17: 0.1 mol/L-3000#1.27 × 10-7-4090.008358.466.13160.90838
18: 0.1 mol/L-5000#4.43 × 10-8-6040.016390.806.70740.94493
表1  图2中动电位极化曲线以及图3中电化学阻抗谱拟合参数
图3  不同表面粗糙度的Vit1样品在不同条件的NaOH溶液浸泡后的EIS及等效电路图
图4  不同表面粗糙度的Vit1样品在不同条件的NaOH溶液浸泡后表面SEM图
图5  IC 0.1 mol/L-35 ℃样品的SEM图和能谱色散图,不同表面粗糙度的Vit样品在不同条件的NaOH溶液浸泡后基底平整区与腐蚀产物区的单位原子百分比
图6  0.1 mol/L-25 ℃样品的表面XPS全谱和主要元素的精细谱图
图7  腐蚀反应机理示意图
[1] Ding S B, Xiang T F, Li C, et al. Fabrication of self-cleaning super-hydrophobic nickel/graphene hybrid film with improved corrosion resistance on mild steel [J]. Mater. Design, 2017, 117: 280
[2] Chen Y. Corrosion of buried metal pipelines in alkaline soil media [J]. Oil-Gas Fields Surf. Eng., 2014, 33(9): 92
[2] 陈 宇. 埋地金属管道在碱性土壤介质中的腐蚀 [J]. 油气田地面工程, 2014, 33(9): 92
[3] Islam J, Anwar R, Shareef M, et al. Rechargeable metal-metal alkaline batteries: recent advances, current issues and future research strategies [J]. J. Power Sources, 2023, 563: 232777
[4] Tang H M, Zhan C, Li Q, et al. Design and performance of molybdenum-cobalt-vanadium polymetallic composite materials for hydrogen production by alkaline water electrolysis [J]. Energy Res. Manag., 2024, 16(2): 43
[4] 唐红梅, 詹 聪, 李 琴 等. 钼-钴-钒多金属复合材料设计及碱性电解水制氢性能 [J]. 能源研究与管理, 2024, 16(2): 43
[5] Liu M M, Fan X F, Cui X Q, et al. Noble metal-modified copper surfaces for alkaline condition hydrogen evolution reaction [J]. J. Alloy. Compd., 2024, 1005: 175966
[6] Esfandiari N, Aliofkhazraei M, Colli A N, et al. Metal-based cathodes for hydrogen production by alkaline water electrolysis: review of materials, degradation mechanism, and durability tests [J]. Prog. Mater. Sci., 2024, 144: 101254
[7] Sun X. Design and electrochemical corrosion behavior of Zr-Ti-Ni-Cu-Be high entropy bulk metallic glasses [D]. Qingdao: China University of Petroleum (East China), 2019
[7] 孙 旭. Zr-Ti-Ni-Cu-Be系高熵非晶合金设计及电化学腐蚀行为 [D]. 青岛: 中国石油大学(华东), 2019
[8] He Z C, Qin T N, Ding Y, et al. Investigation of the corrosion resistance of alkaline electroless nickel plating on aluminum alloy [J]. Light Alloy Fabricat. Technol., 2009, 37(3): 44
[8] 贺忠臣, 秦铁男, 丁 毅 等. 6063铝合金碱性化学镀镍耐腐蚀性能研究 [J]. 轻合金加工技术, 2009, 37(3): 44
[9] Chen L, Li X. Electrochemical corrosion properties of Cu72Sn10-P10Ni8 amorphous ribbon [J]. Mater. Mech. Eng., 2015, 39(9): 53
[9] 陈 琳, 李 翔. Cu72Sn10P10Ni8非晶薄带的电化学腐蚀性能 [J]. 机械工程材料, 2015, 39(9): 53
[10] Suo Z Y, Gong A H, Wang X, et al. Corrosion behavior of Ti-Zr based bulk amorphous alloys in NaOH solution [J]. Met. Funct. Mater., 2016, 23(3): 42
[10] 索忠源, 龚安华, 王 鑫 等. Ti-Zr基块体非晶合金在NaOH溶液中的腐蚀研究 [J]. 金属功能材料, 2016, 23(3): 42
doi: 10.13228/j.boyuan.issn1005-8192.2015088
[11] Xue R J, Zhao L Z, Cai Y Q, et al. Correlation between boson peak and thermal expansion manifested by physical aging and high pressure [J]. Sci. China Phys. Mech. Astron., 2022, 65: 246111
[12] Nan D, Dong J H. Influence of temperature on corrosion behavior of five kinds of metal in thick alkali solution [J]. Chlor-Alkali Ind., 2007, (9): 40
[12] 楠 顶, 董俊慧. 温度对5种金属在浓碱中腐蚀行为的影响 [J]. 氯碱工业, 2007, (9): 40
[13] Zhao T L, Lu W, Lü H W, et al. Electrochemical corrosion behavior of 10# carbon steel in NaOH solution [J]. Corros. Prot., 2018, 39: 833
[13] 赵天雷, 路 伟, 吕海武 等. 10号碳钢在NaOH溶液中的腐蚀电化学行为 [J]. 腐蚀与防护, 2018, 39: 833
[14] Kisasoz A. Corrosion behavior of alloy AA6063-T4 in HCl and NaOH solutions [J]. Mater. Test., 2018, 60: 478
[15] Zhang Z Y, Long Y, Ye R C, et al. Effect of inhibitors on corrosion of gadolinium in water [J]. J. Chin. Soc. Rare Earths, 2005, 23: 400
[15] 张泽玉, 龙 毅, 叶荣昌 等. 缓蚀剂对金属钆在水介质中腐蚀行为的影响 [J]. 中国稀土学报, 2005, 23: 400
[16] Li F X. Studies on the structural relaxation and corrosion behavior of a Zr-based bulk metall glass [D]. Zhengzhou: Zhengzhou University, 2014
[16] 李凤鲜. Zr基金属玻璃的结构弛豫和腐蚀行为研究 [D]. 郑州: 郑州大学, 2014
[17] Kim H G, Jang H J. Electrochemical corrosion behaviors of amorphous Co69Fe4.5Ni1.5Si10B15 alloy [J]. Met. Mater. Int., 2011, 17: 783
[18] Wang L, Chao Y S. Corrosion behaviors of bulk amorphous Fe41Co7Cr15Mo14C15B6Y2 alloy in NaOH solution [J]. J. Funct. Mater., 2010, 41: 1849
[18] 王 莉, 晁月盛. 铁基块体非晶合金在NaOH溶液中的腐蚀行为 [J]. 功能材料, 2010, 41: 1849
[19] Jiang H R, Bochtler B, Frey M, et al. Equilibrium viscosity and structural change in the Cu47.5Zr45.1Al7.4 bulk glass-forming liquid [J]. Acta Mater., 2020, 184: 69
[20] Zhang C, Li X M, Liu S Q, et al. 3D printing of Zr-based bulk metallic glasses and components for potential biomedical applications [J]. J. Alloy. Compd., 2019, 790: 963
[21] Xue R J, Zhao L Z, Yi J J. Strain aging in metallic glasses [J]. Mater. Lett., 2022, 306: 130931
[22] Ma X W, Xue R J, Wang T T, et al. Comparison of corrosion resistance of Zr-based amorphous alloys and traditional alloys in seawater [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 949
[22] 马晓伟, 薛荣洁, 王涛涛 等. 锆基非晶合金与传统合金在海水中的耐腐蚀性能对比研究 [J]. 中国腐蚀与防护学报, 2024, 44: 949
doi: 10.11902/1005.4537.2023.297
[23] Jiang J, Wang Z B, Zheng Y G, et al. Effect of oxygen impurity on corrosion behavior of a Zr-based bulk metallic glass in 0.5 M H2SO4 and 0.5 M NaOH solutions [J]. Mater. Lett., 2023, 330: 133231
[24] Tang J N, Zhang Z Y, Lin Y J, et al. Corrosion behaviors of Zr-based metallic glass Zr0.55Cu0.30Al0.10Ni0.05)99Y1 [J]. Special Cast. Nonferrous Alloy., 2018, 38: 1145
[24] 汤迦南, 张志英, 林耀军 等. (Zr0.55Cu0.30Al0.10Ni0.05)99Y1非晶合金的腐蚀行为 [J]. 特种铸造及有色合金, 2018, 38: 1145
doi: 10.15980/j.tzzz.2018.10.027
[25] Wang C, Zhang Q S, Jiang F, et al. Corrosion behavior of Zr55Al10Cu30Ni5 amorphous alloy in NaOH solution [J]. Rare Met. Mater. Eng., 2003, 32: 814
[25] 王 成, 张庆生, 江 峰 等. Zr55Al10Cu30Ni5非晶合金在NaOH溶液中的腐蚀行为 [J]. 稀有金属材料与工程, 2003, 32: 814
[26] Huang J S, Liu Y, Chen S Q, et al. Progress and application of Zr-based amorphous alloys [J]. Chin. J. Nonferrous Met., 2003, 13: 1321
[26] 黄劲松, 刘 咏, 陈仕奇 等. 锆基非晶合金的研究进展与应用 [J]. 中国有色金属学报, 2003, 13: 1321
[27] Zhao B W. Behavior and mechanism of catalytic degradation of dyes by CuZr-based metallic glasses and derivative nanocomposites [D]. Hefei: University of Science and Technology of China, 2022
[27] 赵博文. CuZr基非晶合金及衍生纳米复合物催化降解染料的行为与机制研究 [D]. 合肥: 中国科学技术大学, 2022
[28] Duan Y G, Ding Y Q, Zhang L, et al. Biocompatibility of Ti35-Nb3Zr2Ta, a new beta-titanium alloy, as joint prosthesis material [J]. Chin. J. Tissue Eng. Res., 2015, 19: 5536
[28] 段永刚, 丁英奇, 张 龙 等. 新型β钛合金Ti35N3Zr2Ta在人工关节假体应用中的生物相容性 [J]. 中国组织工程研究, 2015, 19: 5536
[29] Tiwari K, Blanquer A, Pavan C, et al. Surface modification of Ti40Cu40Zr11Fe3Sn3Ag3 amorphous alloy for enhanced biocompatibility in implant applications [J]. J. Mater. Res. Technol., 2024, 30: 2333
[30] Cui H L, Zhao H. Inorganic Chemistry [M]. Xi'an: Fourth Military Medical University Press, 2007: 64
[30] 崔华良, 赵 华. 无机化学 [M]. 西安: 第四军医大学出版社, 2007: 64
[31] Huang Y J, Guo Y Z, Fan H B, et al. Synthesis of Fe-Cr-Mo-C-B amorphous coating with high corrosion resistance [J]. Mater. Lett., 2012, 89: 229
[32] Xu S M, Liu H, Wu X, et al. Study of conductivity characteristics of ternary solutions KI/LiCl/LiBr-water-ethanol [J]. J. Dalian Univ. Technol., 2017, 57: 23
[32] 徐士鸣, 刘 欢, 吴 曦 等. KI/LiCl/LiBr-水-乙醇三元体系电导率特性研究 [J]. 大连理工大学学报, 2017, 57: 23
[33] Jensen F. Activation energies and the Arrhenius equation [J]. Qual. Reliab. Eng. Int., 1985, 1(1): 13
[34] Chen L M, Cheng M X, Xiao X F, et al. Measurement of the relationship between conductivity of salt solution and concentration and temperature [J]. Lab. Res. Explor., 2010, 29(5): 39
[34] 陈丽梅, 程敏熙, 肖晓芳 等. 盐溶液电导率与浓度和温度的关系测量 [J]. 实验室研究与探索, 2010, 29(5): 39
[35] Ye F X, Yao J, Liu Y F, et al. Erosion corrosion characteristics of X80 pipeline steel in two-phase flow under the influence of multiple factors [J]. Chem. Ind. Eng. Progress, 2021, 40: 6450
[35] 叶福相, 姚 军, 刘玉发 等. 多因素影响下的X80管道钢两相流冲蚀腐蚀特性 [J]. 化工进展, 2021, 40: 6450
doi: 10.16085/j.issn.1000-6613.2021-1370
[36] Pan Y, Wu C R, Chen S W, et al. Research progress of oxygen reduction catalytic materials and catalytic active sites [J]. Mater. Rep., 2019, 33(suppl. 1) : 41
[36] 潘 云, 吴承仁, 陈绍维 等. 氧还原催化材料与催化机理及活性位点的研究进展 [J]. 材料导报, 2019, 33(): 41
[37] Ding G Q, Li X Y, Zhang B, et al. Variation of free corrosion potential of several metallic materials in natural seawater [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 543
[37] 丁国清, 李向阳, 张 波 等. 金属材料在天然海水中的腐蚀电位及其变化规律 [J]. 中国腐蚀与防护学报, 2019, 39: 543
doi: 10.11902/1005.4537.2019.233
[38] Jia B L, Cao F H, Liu W J, et al. Review on electrochemical detection techniques for corrosion of reinforcing steel in concrete [J]. J. Chin. Mater. Sci. Eng., 2010, 28: 791
[38] 贾丙丽, 曹发和, 刘文娟 等. 钢筋混凝土腐蚀的电化学检测研究现状 [J]. 材料科学与工程学报, 2010, 28: 791
[39] Dai C D, Fu Y, Guo J X, et al. Effects of substrate temperature and deposition time on the morphology and corrosion resistance of FeCoCrNiMo0.3 high-entropy alloy coating fabricated by magnetron sputtering [J]. Int. J. Miner. Metall. Mater., 2020, 27: 1388
[40] Hu J F, Xie C X, Tao P J. Effect of structural state on corrosion properties of all metal Fe based amorphous alloys [J]. Mater. Rep., 2022, 36(suppl. 1) : 360
[40] 胡家富, 谢春晓, 陶平均. 结构状态对全金属Fe基非晶合金腐蚀性能的影响 [J]. 材料导报, 2022, 36(): 360
[41] Wang D P, Li X, Chen Z. et al. Susceptibility of chloride ion concentration, temperature, and surface roughness on pitting corrosion of CoCrFeNi medium-entropy alloy [J]. Mater. Corros., 2021, 73: 106
[42] Zhong P, Shi Z Q, Wang Y F, et al. Electrochemical corrosion performance of Zr2TiCuNiBe high-entropy metallic glass [J]. J. Netshape Forming Eng., 2023, 15(5): 139
[42] 钟 鹏, 石志强, 王彦芳 等. Zr2TiCuNiBe高熵非晶合金的电化学腐蚀行为 [J]. 精密成形工程, 2023, 15(5): 139
[43] Zhang W, Cao W K, Yang J L. Effects of temperature and chloride ion concentration on electrochemical corrosion of Cr13 tubing in completion fluid [J]. Corros. Prot. Petrochem. Ind., 2023, 40(4): 1
[43] 张 伟, 曹文凯, 阳俊龙. 温度和Cl-浓度对完井液中Cr13油管的电化学腐蚀的影响 [J]. 石油化工腐蚀与防护, 2023, 40(4): 1
[44] Song Y L, Suo Z Y, Ma C J, et al. Glass forming ability and corrosion behavior of Ti-Zr-Be-Cu-Co bulk metallic glass [J]. Rare Met. Mater. Eng., 2013, 42: 2127
[44] 宋艳玲, 索忠源, 马长捷 等. Ti-Zr-Be-Cu-Co块体非晶合金形成能力及其耐蚀性的研究 [J]. 稀有金属材料与工程, 2013, 42: 2127
[45] Liao C H, Zhou J, Shen H. Electrochemical corrosion behaviors before and after laser polishing of additive manufactured TC4 titanium alloy [J]. Chin. J. Lasers, 2020, 47: 0102003
[45] 廖聪豪, 周 静, 沈 洪. 增材制造TC4钛合金在激光抛光前后的电化学腐蚀性能 [J]. 中国激光, 2020, 47: 0102003
[46] Li G Q, Zheng L J, Li H X. Corrosion behavior of the bulk amorphous Mg65Cu25Gd10 alloy [J]. Rare Met. Mater. Eng., 2009, 38: 110
[46] 李国强, 郑立静, 李焕喜. Mg65Cu25Gd10非晶合金的腐蚀行为 [J]. 稀有金属材料与工程, 2009, 38: 110
[47] Shang S Z, Kong M L, Li Y. Corrsion behavior of Zr53.5Cu26.5Ni5-Al12Ag3 bulk metallic glass in NaOH [J]. J. Shenyang Inst. Chem. Technol., 2012, 26: 199
[47] 尚世智, 孔美玲, 李 云. 锆基非晶合金在NaOH溶液中的腐蚀行为 [J]. 沈阳化工大学学报, 2012, 26: 199
[48] Li L H, Yang J, Li H Y. Quantifying the microstructure and phase assemblage of alkali-activated fly ash/slag materials by EDS mapping analysis [J]. Mater. Design, 2023, 234: 112320
[49] Guan P F, Wang B, Wu Y C, et al. Heterogeneity: The soul of metallic glasses [J]. Acta Phys. Sin., 2017, 66: 176112
[49] 管鹏飞, 王 兵, 吴义成 等. 不均匀性: 非晶合金的灵魂 [J]. 物理学报, 2017, 66: 176112
[50] Liang T, Yan R. Anti-Chemical Detergent Equipment Corrosion and Protection [M]. Beijing: Publishing House of Electronics Industry, 2010
[50] 梁 婷, 阎 瑞. 防化洗消装备腐蚀与防护 [M]. 北京: 电子工业出版社, 2010
[51] Qin W, Nam C, Li H L, et al. Tetragonal phase stability in ZrO2 film formed on zirconium alloys and its effects on corrosion resistance [J]. Acta Mater., 2007, 55: 1695
[1] 刘硕, 吴立朋, 李京伦, 邢金正, 李赛. 盐碱地环境下铁尾矿基地聚物中钢筋锈蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(5): 1371-1380.
[2] 李萍, 时慧杰, 裴继斌, 王子健, 曹铁山, 程从前, 赵杰. 纳秒激光辐照对17-4PH不锈钢电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1417-1424.
[3] 申志远, 单广斌, 陈闽东, 刘媛双. 用于腐蚀监测的电化学噪声信号识别方法[J]. 中国腐蚀与防护学报, 2025, 45(5): 1433-1440.
[4] 何武豪, 刘阳, 杨思懿, 张韶栋, 吴伟, 张俊喜. 敏化处理对传统和增材制造316L不锈钢电化学和晶间腐蚀的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1331-1340.
[5] 郭玉杰, 李艳辉, 夏大海, 胡文彬. 腐蚀电化学阻抗谱的数据解析与物理模型研究进展[J]. 中国腐蚀与防护学报, 2025, 45(5): 1143-1160.
[6] 刘鹏鹤, 薛丽莉, 许立坤, 辛永磊, 郭明帅, 周帅, 段体岗. 钛基体阴极充氢处理对RuO2-IrO2-TiO2 阳极微观结构和性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1277-1288.
[7] 夏大海, 潘成成, 郭玉杰, 胡文彬, TRIBOLLET Bernard. EIS研究7050铝合金在NaCl溶液空蚀作用下的界面状态与腐蚀机制[J]. 中国腐蚀与防护学报, 2025, 45(5): 1196-1204.
[8] 周谦永, 赖漾, 李谦. 酸洗工艺对不同锡量二次冷轧镀锡板耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 939-946.
[9] 熊启勇, 蒋婉娟, 曾美婷, 徐金山, 易勇刚, 李岩岩, 董泽华. 基于双电极电化学阻抗实现现场涂层老化状态的快速无损检测[J]. 中国腐蚀与防护学报, 2025, 45(4): 1025-1034.
[10] 冉仁豪, 单慧琳, 张鹏杰, 汪冬梅, 斯佳佳, 徐光青, 吕珺. 表层镁合金化NdFeB磁体的制备及其耐腐蚀性能[J]. 中国腐蚀与防护学报, 2025, 45(4): 1117-1126.
[11] 李茂, 邓轲, 陈衍祥, 刘中豪, 李尚, 郭宇婷, 董选普, 曹华堂. N2 流量和靶基距对多弧离子镀沉积AlSiN纳米复合涂层的微观组织及耐腐蚀性能影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1041-1050.
[12] 王亚东, 马荣耀, 万晔, 董俊华. 静水压力对吉帕级海工钢母材及焊材腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(3): 653-663.
[13] 陈思雨, 王靖羽, 高立强. 桥梁缆索用高强锌铝合金镀层钢丝在中性盐雾环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 827-836.
[14] 李祥东, 刘昌昊, 张弛, 陈文娟, 崔宸悦, 朱勇文, 王姝舒. WC-Zn复合镀层的工艺设计及其性能研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 795-802.
[15] 郑文涛, 陆飞雪, 都凯, 王志惠, 贾海龙. 喷丸工艺对7075铝合金板材表面性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(3): 765-772.