Please wait a minute...
中国腐蚀与防护学报  2026, Vol. 46 Issue (1): 308-314     CSTR: 32134.14.1005.4537.2025.090      DOI: 10.11902/1005.4537.2025.090
  研究报告 本期目录 | 过刊浏览 |
一种大气腐蚀实时监测装置的开发及其在不同环境中的应用
岳远广(), 尹志彪, 张子月, 江社明, 张启富
钢铁研究总院 先进金属材料涂镀国家工程实验室 新冶高科技集团有限公司 北京 100081
Development of an Atmospheric Corrosion Monitor and its Real-time Monitoring in Different Environmental Conditions
YUE Yuanguang(), YIN Zhibiao, ZHANG Ziyue, JIANG Sheming, ZHANG Qifu
National Engineering Lab of Advanced Coating Technology for Metals, New Metallurgy Hi-Tech Group Co. Ltd., Central Iron & Steel Research Institute, Beijing 100081, China
引用本文:

岳远广, 尹志彪, 张子月, 江社明, 张启富. 一种大气腐蚀实时监测装置的开发及其在不同环境中的应用[J]. 中国腐蚀与防护学报, 2026, 46(1): 308-314.
Yuanguang YUE, Zhibiao YIN, Ziyue ZHANG, Sheming JIANG, Qifu ZHANG. Development of an Atmospheric Corrosion Monitor and its Real-time Monitoring in Different Environmental Conditions[J]. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 308-314.

全文: PDF(5843 KB)   HTML
摘要: 

介绍了一种新型的大气腐蚀监测工作站,其专为评估不同大气环境下的材料腐蚀性而设计。该设备结构简洁、操作友好,能够实时采集长期腐蚀数据,并监控温度、湿度、紫外线强度和SO2浓度等关键大气参数。通过对比0.5和2 mm厚度探针元件的测量结果,表明0.5 mm探针在灵敏度和响应时间上表现更优。实验结果表明,该设备能够有效评价低碳钢在不同大气条件下的腐蚀情况,具备极高的分辨率(可达0.05 mm),为材料科学领域提供了强有力的工具。

关键词 大气腐蚀腐蚀监测低碳钢腐蚀速率    
Abstract

Herein, an innovative multi-channel atmospheric corrosion monitoring workstation was designed to evaluate the corrosivity of different atmospheric conditions on engineering materials. The device features a simple structure and user-friendly operation, enabling the real-time collection of long-term corrosion data of materials, and the monitor of key atmospheric parameters such as temperature, humidity, UV intensity, and SO2 concentration. By comparing the measurement results of two probes with detecting elements of 0.5 and 2 mm thickness respectively, it was found that the 0.5 mm probe performed better in terms of sensitivity and response time. It follows that the device can effectively evaluate the corrosion of mild steel in different atmospheric conditions, with a resolution of up to 0.05 mm. Obviously, it can be expected that this device will become a providing a powerful tool for assessment of corrosion performance of engineering materials.

Key wordsatmospheric corrosion    corrosion monitoring    mild steel    corrosion rate
收稿日期: 2025-03-16      32134.14.1005.4537.2025.090
ZTFLH:  TG172  
通讯作者: 岳远广,E-mail:yueyuanguang@126.com,研究方向为材料腐蚀与防护
作者简介: 岳远广,男,1974年生,博士生
图1  微电阻测量示意图
图2  工作站原理图
图3  测量原理示意图及探针实物图
图4  大气腐蚀监测流程图
图5  不同环境因素对腐蚀速率的影响[28,29]
图6  ER探针的1 a腐蚀数据
图7  2和0.5 mm探针所采集的剩余厚度的方差
图8  探针和挂片正反面的微观形貌
[1] Dong J H, Han E H, Ke W. Introduction to atmospheric corrosion research in China [J]. Sci. Technol. Adv. Mater., 2007, 8: 559
doi: 10.1016/j.stam.2007.08.010
[2] Di Sarno L, Majidian A, Karagiannakis G. The effect of atmospheric corrosion on steel structures: A state-of-the-art and case-study [J]. Buildings, 2021, 11: 571
doi: 10.3390/buildings11120571
[3] Chen B, Xu Y L, Qu W L. Evaluation of atmospheric corrosion damage to steel space structures in coastal areas [J]. Int. J. Solid. Struct., 2005, 42: 4673
doi: 10.1016/j.ijsolstr.2005.02.004
[4] Becker J, Pellé J, Rioual S, et al. Atmospheric corrosion of silver, copper and nickel exposed to hydrogen sulphide: A multi-analytical investigation approach [J]. Corros. Sci., 2022, 209: 110726
doi: 10.1016/j.corsci.2022.110726
[5] Popova K, Prošek T. Corrosion monitoring in atmospheric conditions: A review [J]. Metals, 2022, 12: 171
doi: 10.3390/met12020171
[6] Klein L J, Singh P J, Schappert M, et al. Corrosion management for data centers [A]. Proceedings of the 2011 27th Annual IEEE Semiconductor Thermal Measurement and Management Symposium [C]. San Jose, 2011: 21
[7] Kumar V. Preservation methods of historical iron objects: An overview [J]. Int. J. Eng. Sci. Invent., 2018, 7: 22
[8] Li Z L, Fu D M, Li Y, et al. Application of an electrical resistance sensor-based automated corrosion monitor in the study of atmospheric corrosion [J]. Materials, 2019, 12: 1065
doi: 10.3390/ma12071065
[9] Ma C, Wang Z Q, Behnamian Y, et al. Measuring atmospheric corrosion with electrochemical noise: A review of contemporary methods [J]. Measurement, 2019, 138: 54
doi: 10.1016/j.measurement.2019.02.027
[10] McKenzie, RM. Vassie P. Use of weight loss coupons and electrical resistance probes in atmospheric corrosion tests [J]. Brit. Corros. J., 1985, 20: 117
doi: 10.1179/000705985798272696
[11] Fowler S, Francis A, Little B, et al. The use of corrosion coupons to control atmospheric corrosion salt spray tests [A]. Paper Presented at the Corrosion 2017 [C]. New Orleans, 2017: NACE-2017-9125
[12] Mostafa I, Brederlow R. Trends, challenges, and recent advances in electrochemical impedance spectroscopy [J]. IEEE Sens. Lett., 2022, 6: 1
[13] Nováková K, Papež V, Sadil J, et al. Review of electrochemical impedance spectroscopy methods for lithium-ion battery diagnostics and their limitations [J]. Monatsh. Chem.-Chem. Mon., 2024, 155: 227
doi: 10.1007/s00706-023-03165-1
[14] Xia D H, Deng C M, Macdonald D, et al. Electrochemical measurements used for assessment of corrosion and protection of metallic materials in the field: A critical review [J]. J. Mater. Sci. Technol., 2022, 112: 151
doi: 10.1016/j.jmst.2021.11.004
[15] Chang W W, Qian H C, Li Z Y, et al. Application and prospect of localized electrochemical techniques for microbiologically influenced corrosion: A review [J]. Corros. Sci., 2024, 236: 112246
doi: 10.1016/j.corsci.2024.112246
[16] Li X G, Li Q, Bei Z B, et al. Latest developments on atmospheric corrosion monitoring technologies for steels [J]. Angang Technol., 2020(6): 1
[16] 李晓刚, 李 清, 裴梓博 等. 钢铁大气腐蚀监测技术研究进展 [J]. 鞍钢技术, 2020(6): 1
[17] Feliu S, Morcillo M, Chico B. Effect of distance from sea on atmospheric corrosion rate [J]. Corrosion, 1999, 55: 883
doi: 10.5006/1.3284045
[18] Shinohara T, Motoda S I, Oshikawa W. Evaluation of corrosivity of atmosphere by acm type corrosion sensor [J]. Corros. Eng., 2005, 54: 375
[19] Soh J Y, Lee M W, Kim S K, et al. Corrosion monitoring for offshore wind farm's substructures by using electrochemical noise sensors [J]. KEPCO J. Electr Power Energy, 2016, 2: 615
[20] Zou D J, Luo W, Chen Q Y, et al. Corrosion evolution and quantitative corrosion monitoring of Q355 steel for offshore wind turbines in multiple marine corrosion zones [J]. Ocean Eng., 2024, 311: 119044
doi: 10.1016/j.oceaneng.2024.119044
[21] Marcantonio V, Monarca D, Colantoni A, et al. Ultrasonic waves for materials evaluation in fatigue, thermal and corrosion damage: A review [J]. Mech. Syst. Signal Pr., 2019, 120: 32
doi: 10.1016/j.ymssp.2018.10.012
[22] Majhi S, Mukherjee A, George N V, et al. Corrosion monitoring in steel bars using Laser ultrasonic guided waves and advanced signal processing [J]. Mech. Syst. Signal Pr., 2021, 149: 107176
doi: 10.1016/j.ymssp.2020.107176
[23] Jhang K Y. Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: A review [J]. Int. J. Precis. Eng. Manuf., 2009, 10: 123
[24] Ma X Y, Li J, Guo Z M, et al. Role of big data and technological advancements in monitoring and development of smart cities [J]. Heliyon, 2024, 10: e34821
doi: 10.1016/j.heliyon.2024.e34821
[25] Wu X M, Li Z, Fu D M, et al. Establish real-time corrosion map through dual-driven data and knowledge neural network [J]. Process Saf. Environ. Prot., 2024, 190: 229
doi: 10.1016/j.psep.2024.07.072
[26] ASTM. G1-03 (Reapproved 2017) Standard practice for preparing, cleaning, and evaluating corrosion test specimens [S]. 2017
[27] Prosek T, Kouril M, Dubus M, et al. Real-time monitoring of indoor air corrosivity in cultural heritage institutions with metallic electrical resistance sensors [J]. Stud. Conserv., 2013, 58: 117
doi: 10.1179/2047058412Y.0000000080
[28] Obeyesekere N U. Pitting Corrosion [M]. Cambridge: Woodhead Publishing, 2017: 215
[29] Corvo F, Minotas J, Delgado J, et al. Changes in atmospheric corrosion rate caused by chloride ions depending on rain regime [J]. Corros. Sci., 2005, 47: 883
doi: 10.1016/j.corsci.2004.06.003
[30] Chu H Q, Guan Y J, Zhai J Q, et al. Evolution of rust layers and degradation of mechanical properties of Q420B steel in a simulated wet/dry cyclic coastal atmosphere [J]. Constr. Build. Mate., 2024, 449: 138265
doi: 10.1016/j.conbuildmat.2024.138265
[31] Liu Y W, Liu M R, Lu X, et al. Effect of temperature and ultraviolet radiation on corrosion behavior of carbon steel in high humidity tropical marine atmosphere [J]. Mater. Chem. Phys., 2022, 277: 124962
doi: 10.1016/j.matchemphys.2021.124962
[1] 李兆南, 侯禹岑, 莒鹏, 庄铁钢, 陈景杰, 王明昱, 徐云泽. 模拟液滴电导率变化对碳钢大气腐蚀的影响机制研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1537-1548.
[2] 冯宇芹, 郭同翰, 余韦汉, 吴伟, 张大全. Sb对高强结构钢在东海环境中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1300-1308.
[3] 李秋博, 苏一喆, 吴伟, 张俊喜. 自源性磁场对Cu大气腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 956-964.
[4] 彭文山, 辛永磊, 温杰平, 侯健, 孙明先. 极地冰覆盖下变温和恒温对高强钢腐蚀影响研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 821-826.
[5] 张佳伟, 黄峰, 汪涵敏, 郎丰军, 袁玮, 刘静. 耐候钢热轧氧化皮对快速稳定化锈层演变规律及耐蚀性影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 891-900.
[6] 樊志彬, 高智悦, 宗立君, 吴亚平, 李辛庚, 姜波, 杜宝帅. 1050A铝合金在山东不同典型环境中的大气腐蚀行为特征研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1055-1063.
[7] 王博, 安士忠, 郭俊卿, 纪运广, 李志强. 商用MB1MB8镁合金在NaCl溶液中的电化学性能[J]. 中国腐蚀与防护学报, 2024, 44(4): 1073-1080.
[8] 彭立园, 吴欣强, 张兹瑜, 谭季波. 压水堆核电厂热态功能试验水化学与设备材料腐蚀关系的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(3): 529-539.
[9] 麻衡, 田会云, 刘宇茜, 王月香, 何康, 崔中雨, 崔洪芝. S420海工钢在不同海洋区带环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 635-644.
[10] 冯兴国, 顾卓然, 范琦琦, 卢向雨, 杨雅师. 改性珊瑚混凝土中2205不锈钢钢筋的耐蚀性研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 789-796.
[11] 李婷玉, 魏洁, 陈楠, 万晔, 董俊华. 用于大气环境的电化学传感器的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 365-371.
[12] 常雪婷, 宋嘉琪, 王冰, 王东胜, 陈文聪, 王海丰. 微合金化对高锰奥氏体钢在酸性盐雾环境下的耐蚀性能影响研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 47-58.
[13] 孙硕, 代珈铭, 宋影伟, 艾彩娇. 挤压态EW75稀土镁合金在沈阳工业大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[14] 王靖羽, 周学杰, 王洪伦, 吴军, 陈昊, 郑鹏华. 碳钢和高强钢在南海大气环境中的初期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 237-245.
[15] 汪洋, 刘元海, 慕仙莲, 刘淼然, 王俊, 李秋平, 陈川. 海洋气候大气腐蚀过程环境因素对薄液膜内物质传递的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1015-1021.