|
|
温度对核电站用42CrMoE低合金钢在硼酸模拟液中腐蚀行为的影响 |
杨成1, 杨广明2, 王建军1, 苗学良1, 张译2, 孙宝壮2, 刘智勇2( ) |
1 核电运行研究(上海)有限公司 上海 200126 2 北京科技大学新材料技术研究院 腐蚀与防护教育部重点实验室 北京 100083 |
|
Effect of Temperature on Corrosion Behavior of 42CrMoE Low-alloy Steel in Boric Acid Solution |
YANG Cheng1, YANG Guangming2, WANG Jianjun1, MIAO Xueliang1, ZHANG Yi2, SUN Baozhuang2, LIU Zhiyong2( ) |
1 Nuclear Power Operations Research Institute, Shanhai 200126, China 2 Key Laboratory for Corrosion and Protection (MOE), Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China |
引用本文:
杨成, 杨广明, 王建军, 苗学良, 张译, 孙宝壮, 刘智勇. 温度对核电站用42CrMoE低合金钢在硼酸模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(5): 1345-1352.
Cheng YANG,
Guangming YANG,
Jianjun WANG,
Xueliang MIAO,
Yi ZHANG,
Baozhuang SUN,
Zhiyong LIU.
Effect of Temperature on Corrosion Behavior of 42CrMoE Low-alloy Steel in Boric Acid Solution[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1345-1352.
1 |
Lv Z P. Mechanisms and growth rate models for stress corrosion cracking in high temperature water [J]. Mater. China, 2019, 38: 651
|
1 |
吕战鹏. 高温水中应力腐蚀开裂机理及扩展模型 [J]. 中国材料进展, 2019, 38: 651
|
2 |
Chen J D, Mo W L, Wang P, et al. Effects of tempering temperature on the impact toughness of steel 42CrMo [J]. Acta Metall. Sin., 2012, 48: 1186
doi: 10.3724/SP.J.1037.2012.00340
|
2 |
陈俊丹, 莫文林, 王 培 等. 回火温度对42CrMo钢冲击韧性的影响 [J]. 金属学报, 2012, 48: 1186
doi: 10.3724/SP.J.1037.2012.00340
|
3 |
Peng L Y, Zhang Z Y, Tan J B, et al. Effects of boric acid and lithium hydroxide on the corrosion behaviors of 316LN stainless steel in simulating hot functional test high-temperature pressurized water [J]. Corros. Sci., 2022, 198: 110157
|
4 |
Cui T M, Xu X H, Pan D, et al. Determining SCC resistance of stainless steel claddings in high- temperature water by constant load crack growth tests and slow strain rate tests [J]. J. Nucl. Mater., 2024, 588: 154796
|
5 |
Zhang W, Jia W Q, Wen J, et al. Research on ultra-high cycle fatigue behavior of 42CrMoE bolt material for nuclear power station [J]. Hot Work. Technol., 2018, 47(10): 39
|
5 |
张 维, 贾文清, 文 杰 等. 核电站用42CrMoE螺栓材料超高周疲劳性能研究 [J]. 热加工工艺, 2018, 47(10): 39
|
6 |
Quan G Z, Li G S, Chen T, et al. Dynamic recrystallization kinetics of 42CrMo steel during compression at different temperatures and strain rates [J]. Mater. Sci. Eng., 2011, 528A: 4643
|
7 |
Liu B P, Zhang Z M, Wang J Q, et al. Review of stress corrosion crack initiation of nuclear structural materials in high temperature and high pressure water [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 513
|
7 |
刘保平, 张志明, 王俭秋 等. 核用结构材料在高温高压水中应力腐蚀裂纹萌生研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 513
doi: 10.11902/1005.4537.2021.130
|
8 |
Mendonça R, Bosch R W, Van Renterghem W, et al. Effect of temperature and dissolved hydrogen on oxide films formed on Ni and Alloy 182 in simulated PWR water [J]. J. Nucl. Mater., 2016, 477: 280
|
9 |
Zhao Q C, Wang X F, Pan Z M, et al. Effects of rare earth elements addition on mechanical properties and corrosion behavior of GCr15 bearing steel under different heat treatment conditions [J]. Corros. Commun., 2023, 9: 65
|
10 |
Xiao Q, Lu Z P, Chen J J, et al. The effects of temperature and aeration on the corrosion of A508III low alloy steel in boric acid solutions at 25–95°C [J]. J. Nucl. Mater., 2016, 480: 88
|
11 |
Xiao Q, Lv Z P, Chen J J, et al. Corrosion and electrochemical behavior of A508Ⅲ low alloy steel in boric acid solutions with different concentrations [J]. Corros. Prot., 2015, 36: 294
|
11 |
肖 茜, 吕战鹏, 陈俊劼 等. A508Ⅲ低合金钢在不同浓度硼酸溶液中的腐蚀与电化学行为 [J]. 腐蚀与防护, 2015, 36: 294
|
12 |
Ru X K, Ma J R, Lu Z P, et al. Effects of iron content in Ni-Cr-Fe alloys on the oxide films formed in an oxygenated simulated PWR water environment [J]. J. Nucl. Mater., 2018, 509: 29
|
13 |
Lim Y S, Hwang S S, Kim D J, et al. Corrosion behavior of SA508 low alloy steels exposed to aerated boric acid solutions [J]. Nucl. Eng. Technol., 2020, 52: 1222
|
14 |
Fyfitch S, Xu H. Boric acid corrosion laboratory investigation of carbon and low-alloy steels in PWR systems [A]. Proceeding of the 13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems [C]. Toronto, 2007
|
15 |
Park J H, Chopra O K, Natesan K, et al. Boric acid corrosion of light water reactor pressure vessel head materials [R]. Argonne: Argonne National Laboratory, 2005
|
16 |
Liu Z Y, Li X G, Cheng Y F. Mechanistic aspect of near-neutral pH stress corrosion cracking of pipelines under cathodic polarization [J]. Corros. Sci., 2012, 55: 54
|
17 |
Liu Z Y, Cui Z Y, Li X G, et al. Mechanistic aspect of stress corrosion cracking of X80 pipeline steel under non-stable cathodic polarization [J]. Electrochem. Commun., 2014, 48: 127
|
18 |
Yang G M, Du Y F, Chen S Y, et al. Effect of secondary passivation on corrosion behavior and semiconducting properties of passive film of 2205 duplex stainless steel [J]. J. Mater. Res. Technol., 2021, 15: 6828
|
19 |
Sun B Z, Pan Y, Yang J K, et al. Microstructure evolution and SSCC behavior of strain-strengthened 304 SS pre-strained at room temperature and cryogenic temperature [J]. Corros. Sci., 2023, 210: 110855
|
20 |
Yang G M, Du Y F, Chen S Y, et al. Effect of grain size on corrosion behavior of 304 stainless steel in coal chemical high salty wastewater [J]. Mater. Today Commun., 2023, 34: 105407
|
21 |
Hao W K, Liu Z Y, Du C W, et al. Stress Corrosion Cracking Behavior of 35CrMo Steel in Acidic Hydrogen Sulfide Solutions [J]. J. Mech. Eng., 2014, 50(4): 39
|
21 |
郝文魁, 刘智勇, 杜翠薇 等. 35CrMo钢在酸性H2S环境中的应力腐蚀行为与机理 [J]. 机械工程学报, 2014, 50(4): 39
|
22 |
Xiao Q, Lv Z P, Chen J J, et al. Influence of ferric ions on corrosion behavior of A508Ⅲ low alloy steel in boric acid solutions [J]. Corros. Prot., 2015, 36: 840
|
22 |
肖 茜, 吕战鹏, 陈俊劼 等. 三价铁离子对低合金钢在硼酸溶液中腐蚀的影响 [J]. 腐蚀与防护, 2015, 36: 840
|
23 |
Liu Z Y, Li X G, Du C W, et al. Effect of inclusions on initiation of stress corrosion cracks in X70 pipeline steel in an acidic soil environment [J]. Corros. Sci., 2009, 51: 895
|
24 |
Liu Z Y, Wang X Z, Du C W, et al. Effect of hydrogen-induced plasticity on the stress corrosion cracking of X70 pipeline steel in simulated soil environments [J]. Mater. Sci. Eng., 2016, 658A: 348
|
25 |
Chen S Y, Wang S C, Suo Y, et al. Inhibition effect of tannic acid and sodium molybdate for the flow corrosion of 304 stainless steel on 90° elbow [J]. J. Mater. Res. Technol., 2022, 20: 2408
|
26 |
Wang L W, Ding Y, Lu Q K, et al. Microstructure and corrosion behavior of welded joint between 2507 super duplex stainless steel and E690 low alloy steel [J]. Corros. Commun., 2023, 11: 1
|
27 |
Liu Z Y, Li X G, Du C W, et al. Local additional potential model for effect of strain rate on SCC of pipeline steel in an acidic soil solution [J]. Corros. Sci., 2009, 51: 2863
|
28 |
Chen X, Li X G, Du C W, et al. Effect of cathodic protection on corrosion of pipeline steel under disbonded coating [J]. Corros. Sci., 2009, 51: 2242
|
29 |
Zeng H T, Yang Y, Zeng M H, et al. Effect of dissolved oxygen on electrochemical corrosion behavior of 2205 duplex stainless steel in hot concentrated seawater [J]. J. Mater. Sci. Technol., 2021, 66: 177
doi: 10.1016/j.jmst.2020.06.030
|
30 |
Sun M H, Du C W, Liu Z Y, et al. Fundamental understanding on the effect of Cr on corrosion resistance of weathering steel in simulated tropical marine atmosphere [J]. Corros. Sci., 2021, 186: 109427
|
31 |
Sun M H, Yang X J, Du C W, et al. Distinct beneficial effect of Sn on the corrosion resistance of Cr–Mo low alloy steel [J]. J. Mater. Sci. Technol., 2021, 81: 175
|
32 |
Liu C, Chen T Q, Li X G. Research progress on initiation mechanism of local corrosion induced by inclusions in low alloy steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 746
|
32 |
刘 超, 陈天奇, 李晓刚. 低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 746
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|