Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (5): 1345-1352     CSTR: 32134.14.1005.4537.2023.395      DOI: 10.11902/1005.4537.2023.395
  研究报告 本期目录 | 过刊浏览 |
温度对核电站用42CrMoE低合金钢在硼酸模拟液中腐蚀行为的影响
杨成1, 杨广明2, 王建军1, 苗学良1, 张译2, 孙宝壮2, 刘智勇2()
1 核电运行研究(上海)有限公司 上海 200126
2 北京科技大学新材料技术研究院 腐蚀与防护教育部重点实验室 北京 100083
Effect of Temperature on Corrosion Behavior of 42CrMoE Low-alloy Steel in Boric Acid Solution
YANG Cheng1, YANG Guangming2, WANG Jianjun1, MIAO Xueliang1, ZHANG Yi2, SUN Baozhuang2, LIU Zhiyong2()
1 Nuclear Power Operations Research Institute, Shanhai 200126, China
2 Key Laboratory for Corrosion and Protection (MOE), Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

杨成, 杨广明, 王建军, 苗学良, 张译, 孙宝壮, 刘智勇. 温度对核电站用42CrMoE低合金钢在硼酸模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(5): 1345-1352.
Cheng YANG, Guangming YANG, Jianjun WANG, Xueliang MIAO, Yi ZHANG, Baozhuang SUN, Zhiyong LIU. Effect of Temperature on Corrosion Behavior of 42CrMoE Low-alloy Steel in Boric Acid Solution[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1345-1352.

全文: PDF(12824 KB)   HTML
摘要: 

以压水堆一回路系统紧固件常用42CrMoE低合金钢材料为研究对象,采用电化学测试和浸泡实验研究了温度对其在硼酸溶液中腐蚀行为的影响。结果表明,温度升高促进了42CrMoE钢在硼酸溶液中的阳极溶解和阴极反应过程,导致其耐蚀性下降。其腐蚀类型从低温时的均匀腐蚀逐渐演变为高温时的局部点蚀为主。42CrMoE钢的腐蚀速率随温度升高显著增大,这是由加速硼酸介质的腐蚀过程和降低腐蚀产物的稳定性共同作用导致的。此外,随浸泡周期的延长,其腐蚀速率呈现先减小后增大,97.5℃时腐蚀速率可达到1.3 mm/a。

关键词 温度42CrMoE低合金钢硼酸腐蚀点蚀    
Abstract

Effect of temperature on the corrosion behavior of 42CrMoE low alloy steel in boric acid solution was investigated using electrochemical measurements and immersion tests, taking 42CrMoE steel for fasteners of pressurized water reactor (PWR) primary system as the research object. The results showed that the increase in temperature promotes the anodic dissolution and cathodic reaction process of 42CrMoE steel in boric acid solution, resulting in a decrease in its corrosion resistance. Its corrosion type gradually evolved from uniform corrosion at low temperature to local pitting corrosion at high temperature. Moreover, the corrosion rate of 42CrMoE steel increases significantly with the increase of temperature, which is caused by accelerating the corrosion process of boric acid medium and reducing the stability of corrosion products. In addition, the corrosion rate first decreases and then increases with the elongation of the immersion cycle, and the corrosion rate can reach 1.3 mm/a at 97.5oC.

Key wordstemperature    42CrMoE low alloy steel    boric acid    corrosion    pitting
收稿日期: 2024-01-12      32134.14.1005.4537.2023.395
ZTFLH:  TG174.2  
基金资助:国家自然科学基金(U22B2065)
通讯作者: 刘智勇,E-mail:liuzhiyong7804@126.com,研究方向为材料腐蚀失效机理与防护技术
作者简介: 杨 成,男,1984年生,硕士,高级工程师
图1  42CrMoE低合金钢的显微结构
图2  42CrMoE钢在不同温度下8800 mg/L硼酸溶液中的EIS和等效电路

Temperature

oC

Rs

Ω·cm2

Qpore × 10-4

Ω-1·cm-2·s n

npore

Rpore,sol

Ω·cm2

Qdl × 10-4

Ω-1·cm-2·s n

ndl

Rct

Ω·cm2

χ2 × 10-4
251.151.36 × 10-21.00883.64.620.70302.40.49
601.268.250.80117.205.481.00205.004.30
97.51.152.010.803.027.200.9068.000.71
表1  42CrMoE 钢在不同温度的8800 mg/L硼酸溶液中阻抗谱拟合结果
图3  42CrMoE钢在不同温度下硼酸溶液中的动电位极化曲线和拟合获得的腐蚀电位和腐蚀电流密度
图4  42CrMoE钢在不同温度下8800 mg/L硼酸溶液中的腐蚀速率
图5  42CrMoE钢在不同温度下8800 mg/L硼酸溶液中浸泡30 d后的宏观腐蚀形貌
图6  42CrMoE钢在不同温度下8800 mg/L硼酸溶液浸泡30 d后的微观腐蚀形貌
图7  42CrMoE钢在25℃下8800 mg/L硼酸溶液中浸泡30 d后LSCM表面形貌分析
图8  42CrMoE钢在60℃下8800 mg/L硼酸溶液中浸泡30 d后LSCM表面形貌分析
图9  42CrMoE钢在97.5℃下8800 mg/L硼酸溶液中浸泡30 d后LSCM表面形貌分析
图10  42CrMoE钢在不同温度下8800 mg/L硼酸溶液中浸泡30 d后表面XRD谱
1 Lv Z P. Mechanisms and growth rate models for stress corrosion cracking in high temperature water [J]. Mater. China, 2019, 38: 651
1 吕战鹏. 高温水中应力腐蚀开裂机理及扩展模型 [J]. 中国材料进展, 2019, 38: 651
2 Chen J D, Mo W L, Wang P, et al. Effects of tempering temperature on the impact toughness of steel 42CrMo [J]. Acta Metall. Sin., 2012, 48: 1186
doi: 10.3724/SP.J.1037.2012.00340
2 陈俊丹, 莫文林, 王 培 等. 回火温度对42CrMo钢冲击韧性的影响 [J]. 金属学报, 2012, 48: 1186
doi: 10.3724/SP.J.1037.2012.00340
3 Peng L Y, Zhang Z Y, Tan J B, et al. Effects of boric acid and lithium hydroxide on the corrosion behaviors of 316LN stainless steel in simulating hot functional test high-temperature pressurized water [J]. Corros. Sci., 2022, 198: 110157
4 Cui T M, Xu X H, Pan D, et al. Determining SCC resistance of stainless steel claddings in high- temperature water by constant load crack growth tests and slow strain rate tests [J]. J. Nucl. Mater., 2024, 588: 154796
5 Zhang W, Jia W Q, Wen J, et al. Research on ultra-high cycle fatigue behavior of 42CrMoE bolt material for nuclear power station [J]. Hot Work. Technol., 2018, 47(10): 39
5 张 维, 贾文清, 文 杰 等. 核电站用42CrMoE螺栓材料超高周疲劳性能研究 [J]. 热加工工艺, 2018, 47(10): 39
6 Quan G Z, Li G S, Chen T, et al. Dynamic recrystallization kinetics of 42CrMo steel during compression at different temperatures and strain rates [J]. Mater. Sci. Eng., 2011, 528A: 4643
7 Liu B P, Zhang Z M, Wang J Q, et al. Review of stress corrosion crack initiation of nuclear structural materials in high temperature and high pressure water [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 513
7 刘保平, 张志明, 王俭秋 等. 核用结构材料在高温高压水中应力腐蚀裂纹萌生研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 513
doi: 10.11902/1005.4537.2021.130
8 Mendonça R, Bosch R W, Van Renterghem W, et al. Effect of temperature and dissolved hydrogen on oxide films formed on Ni and Alloy 182 in simulated PWR water [J]. J. Nucl. Mater., 2016, 477: 280
9 Zhao Q C, Wang X F, Pan Z M, et al. Effects of rare earth elements addition on mechanical properties and corrosion behavior of GCr15 bearing steel under different heat treatment conditions [J]. Corros. Commun., 2023, 9: 65
10 Xiao Q, Lu Z P, Chen J J, et al. The effects of temperature and aeration on the corrosion of A508III low alloy steel in boric acid solutions at 25–95°C [J]. J. Nucl. Mater., 2016, 480: 88
11 Xiao Q, Lv Z P, Chen J J, et al. Corrosion and electrochemical behavior of A508Ⅲ low alloy steel in boric acid solutions with different concentrations [J]. Corros. Prot., 2015, 36: 294
11 肖 茜, 吕战鹏, 陈俊劼 等. A508Ⅲ低合金钢在不同浓度硼酸溶液中的腐蚀与电化学行为 [J]. 腐蚀与防护, 2015, 36: 294
12 Ru X K, Ma J R, Lu Z P, et al. Effects of iron content in Ni-Cr-Fe alloys on the oxide films formed in an oxygenated simulated PWR water environment [J]. J. Nucl. Mater., 2018, 509: 29
13 Lim Y S, Hwang S S, Kim D J, et al. Corrosion behavior of SA508 low alloy steels exposed to aerated boric acid solutions [J]. Nucl. Eng. Technol., 2020, 52: 1222
14 Fyfitch S, Xu H. Boric acid corrosion laboratory investigation of carbon and low-alloy steels in PWR systems [A]. Proceeding of the 13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems [C]. Toronto, 2007
15 Park J H, Chopra O K, Natesan K, et al. Boric acid corrosion of light water reactor pressure vessel head materials [R]. Argonne: Argonne National Laboratory, 2005
16 Liu Z Y, Li X G, Cheng Y F. Mechanistic aspect of near-neutral pH stress corrosion cracking of pipelines under cathodic polarization [J]. Corros. Sci., 2012, 55: 54
17 Liu Z Y, Cui Z Y, Li X G, et al. Mechanistic aspect of stress corrosion cracking of X80 pipeline steel under non-stable cathodic polarization [J]. Electrochem. Commun., 2014, 48: 127
18 Yang G M, Du Y F, Chen S Y, et al. Effect of secondary passivation on corrosion behavior and semiconducting properties of passive film of 2205 duplex stainless steel [J]. J. Mater. Res. Technol., 2021, 15: 6828
19 Sun B Z, Pan Y, Yang J K, et al. Microstructure evolution and SSCC behavior of strain-strengthened 304 SS pre-strained at room temperature and cryogenic temperature [J]. Corros. Sci., 2023, 210: 110855
20 Yang G M, Du Y F, Chen S Y, et al. Effect of grain size on corrosion behavior of 304 stainless steel in coal chemical high salty wastewater [J]. Mater. Today Commun., 2023, 34: 105407
21 Hao W K, Liu Z Y, Du C W, et al. Stress Corrosion Cracking Behavior of 35CrMo Steel in Acidic Hydrogen Sulfide Solutions [J]. J. Mech. Eng., 2014, 50(4): 39
21 郝文魁, 刘智勇, 杜翠薇 等. 35CrMo钢在酸性H2S环境中的应力腐蚀行为与机理 [J]. 机械工程学报, 2014, 50(4): 39
22 Xiao Q, Lv Z P, Chen J J, et al. Influence of ferric ions on corrosion behavior of A508Ⅲ low alloy steel in boric acid solutions [J]. Corros. Prot., 2015, 36: 840
22 肖 茜, 吕战鹏, 陈俊劼 等. 三价铁离子对低合金钢在硼酸溶液中腐蚀的影响 [J]. 腐蚀与防护, 2015, 36: 840
23 Liu Z Y, Li X G, Du C W, et al. Effect of inclusions on initiation of stress corrosion cracks in X70 pipeline steel in an acidic soil environment [J]. Corros. Sci., 2009, 51: 895
24 Liu Z Y, Wang X Z, Du C W, et al. Effect of hydrogen-induced plasticity on the stress corrosion cracking of X70 pipeline steel in simulated soil environments [J]. Mater. Sci. Eng., 2016, 658A: 348
25 Chen S Y, Wang S C, Suo Y, et al. Inhibition effect of tannic acid and sodium molybdate for the flow corrosion of 304 stainless steel on 90° elbow [J]. J. Mater. Res. Technol., 2022, 20: 2408
26 Wang L W, Ding Y, Lu Q K, et al. Microstructure and corrosion behavior of welded joint between 2507 super duplex stainless steel and E690 low alloy steel [J]. Corros. Commun., 2023, 11: 1
27 Liu Z Y, Li X G, Du C W, et al. Local additional potential model for effect of strain rate on SCC of pipeline steel in an acidic soil solution [J]. Corros. Sci., 2009, 51: 2863
28 Chen X, Li X G, Du C W, et al. Effect of cathodic protection on corrosion of pipeline steel under disbonded coating [J]. Corros. Sci., 2009, 51: 2242
29 Zeng H T, Yang Y, Zeng M H, et al. Effect of dissolved oxygen on electrochemical corrosion behavior of 2205 duplex stainless steel in hot concentrated seawater [J]. J. Mater. Sci. Technol., 2021, 66: 177
doi: 10.1016/j.jmst.2020.06.030
30 Sun M H, Du C W, Liu Z Y, et al. Fundamental understanding on the effect of Cr on corrosion resistance of weathering steel in simulated tropical marine atmosphere [J]. Corros. Sci., 2021, 186: 109427
31 Sun M H, Yang X J, Du C W, et al. Distinct beneficial effect of Sn on the corrosion resistance of Cr–Mo low alloy steel [J]. J. Mater. Sci. Technol., 2021, 81: 175
32 Liu C, Chen T Q, Li X G. Research progress on initiation mechanism of local corrosion induced by inclusions in low alloy steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 746
32 刘 超, 陈天奇, 李晓刚. 低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 746
[1] 王承涛, 申冠一, 许少毅, 李威, 王禹桥, 王树臣, 闻东东, 李朋宇. 基于物理场耦合的交流干扰作用下埋地金属管线腐蚀数值仿真[J]. 中国腐蚀与防护学报, 2024, 44(6): 1573-1580.
[2] 苏志诚, 张弦, 程焱, 刘静, 吴开明. 同成分的超细贝氏体钢和Q&P钢在海水中应力腐蚀开裂行为对比研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1495-1506.
[3] 翁硕, 孟超, 罗陵华, 袁奕雯, 赵礼辉, 冯金芝. 基于元胞自动机法的AA7075-T651铝合金在力-化学交互作用下腐蚀损伤特征演化规律研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1507-1517.
[4] 易铄, 周生璇, 叶鹏, 杜晓洁, 徐震霖, 何宜柱. 选区激光熔化成形含Cu中熵合金的微观组织及耐腐蚀性能[J]. 中国腐蚀与防护学报, 2024, 44(6): 1589-1600.
[5] 董楠, 秦慰蓉, 韩培德. SCl表面吸附及其对 γ-FeM(111)(M = CrNiMnMoCuCe)腐蚀的理论研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1566-1572.
[6] 王文泉, 崔宇, 薛蕴鹏, 刘莉, 王福会. 潮湿空气中应力耦合固态NaCl作用下GH4169合金的中温腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1399-1411.
[7] 许志昱, 胡骞, 黄峰, 刘静, 卢献忠. 缝隙几何尺寸对闭塞区化学环境及腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1581-1588.
[8] 王娅利, 管方, 段继周, 张丽娜, 杨政险, 侯保荣. 鼠李糖脂与2,2-二溴-3-次氮基丙酰胺协同抑制X80管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2024, 44(6): 1412-1422.
[9] 曹甫洋, 王浩权, 季谦, 丁恒楠, 袁志钟, 罗锐. 大气等离子喷涂FeCoCrNiMn高熵合金涂层的耐海水腐蚀与磨损性能[J]. 中国腐蚀与防护学报, 2024, 44(6): 1529-1537.
[10] 谢文珍, 王震宇, 韩恩厚. 耐蚀钢筋在模拟混凝土孔隙液环境及海砂混凝土中钢筋在模拟海水环境中的钝化及腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(6): 1454-1464.
[11] 喻政, 陈明辉, 王金龙, 杨莎莎, 王福会. 煤灰中碱金属硫酸盐和氯盐含量对HR3C和渗铝HR3C不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1389-1398.
[12] 庞洁, 刘相局, 刘娜珍, 侯保荣. T2铜合金和Q235钢在模拟北山地下水环境中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1435-1442.
[13] 朱立洋, 陈俊全, 张欣欣, 董泽华, 蔡光义. 磁场对金属腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(5): 1117-1124.
[14] 尹洁, 高永浩, 易芳. Ag微合金化对Mg-Zn-Ca合金微观组织及腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(5): 1274-1284.
[15] 吴浩天, 张天遂, 李广芳, 刘宏芳. 中性水系锌离子电池负极缓蚀剂研究进展[J]. 中国腐蚀与防护学报, 2024, 44(5): 1089-1099.