Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (6): 1529-1537     CSTR: 32134.14.1005.4537.2024.060      DOI: 10.11902/1005.4537.2024.060
  研究报告 本期目录 | 过刊浏览 |
大气等离子喷涂FeCoCrNiMn高熵合金涂层的耐海水腐蚀与磨损性能
曹甫洋(), 王浩权, 季谦, 丁恒楠, 袁志钟, 罗锐
江苏大学材料科学与工程学院 镇江 212013
Tribo-corrosion Performance of Atmospheric Plasma Sprayed FeCoCrNiMn High Entropy Alloy Coatings
CAO Fuyang(), WANG Haoquan, JI Qian, DING Hengnan, YUAN Zhizhong, LUO Rui
School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
引用本文:

曹甫洋, 王浩权, 季谦, 丁恒楠, 袁志钟, 罗锐. 大气等离子喷涂FeCoCrNiMn高熵合金涂层的耐海水腐蚀与磨损性能[J]. 中国腐蚀与防护学报, 2024, 44(6): 1529-1537.
Fuyang CAO, Haoquan WANG, Qian JI, Hengnan DING, Zhizhong YUAN, Rui LUO. Tribo-corrosion Performance of Atmospheric Plasma Sprayed FeCoCrNiMn High Entropy Alloy Coatings[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1529-1537.

全文: PDF(19740 KB)   HTML
摘要: 

研究了采用大气等离子喷涂技术制备的FeCoCrNiMn高熵合金涂层在模拟海水环境中的耐腐蚀与磨损性能。FeCoCrNiMn高熵合金涂层由单相FCC固溶体组成;涂层平均硬度为221.1HV0.2,高于304不锈钢基体的表面平均硬度159.1HV0.2。在3.5%NaCl溶液中,FeCoCrNiMn高熵合金涂层在5 N和10 N载荷下的磨损体积分别为1.21 × 10-2和1.42 × 10-2 mm3,相差17%,其主要磨损机制为腐蚀磨损和氧化磨损;在去离子水中该涂层在5 N和10 N载荷下的磨损体积分别为1.15 × 10-2和1.28 × 10-2 mm3,相差11%,主要磨损机制为黏着磨损和氧化磨损。综合比较,NaCl溶液中涂层的磨损体积高于其在去离子水中的磨损体积,且涂层在NaCl溶液中5 N和10 N载荷下的磨损体积差值大于在去离子水中的磨损体积差值,说明磨损体积随载荷增大而增大的幅度受腐蚀介质影响,NaCl溶液的腐蚀效应对摩擦磨损起到促进作用。同时,在NaCl溶液中,低载荷磨损样品的开路电位可在静置浸泡阶段较短时间内恢复到接近摩擦前水平,而高载荷磨损样品由于机械损伤较大,开路电位上升缓慢,难以恢复到摩擦前水平,说明摩擦磨损造成的机械损伤会加剧腐蚀。

关键词 高熵合金涂层大气等离子喷涂腐蚀磨损钝化    
Abstract

Herein, FeCoCrNiMn high entropy alloy coatings were prepared on 304 stainless steel, using atmospheric plasma spraying technique. The tribo-corrosion behavior of the coating was studied in simulated seawater. Results show that the FeCoCrNiMn high entropy alloy coating was composed of single FCC phase with an average hardness 221.1HV0.2, in contrast, that of the 304 stainless steel is 159.1HV0.2. The tribo-corrosion test results showed that in 3.5%NaCl solution, the wear volumes of FeCoCrNiMn high entropy alloy coating under loads 5 N and 10 N differentiated by 17%, which were 1.21 × 10-2 mm3 and 1.42 × 10-2 mm3 respectively. The main wear mechanism was believed to be corrosive wear and oxidative wear. The wear volumes of the coating under loads 5 N and 10 N in deionized water differentiated by 11%, which were 1.15 × 10-2 mm3 and 1.28 × 10-2 mm3 respectively. The main wear mechanism was also adhesive wear and oxidative wear. The wear volume in NaCl solution higher than in deionized water might suggest that the corrosion effect of NaCl solution promote the wear process. Meanwhile, in NaCl solution, the open circuit potential of the wear samples under lower load could be restored to close to the level before friction motion in a short time during the static soaking stage. However, the open circuit potential of wear samples under higher load increased slowly and was difficult to return to the level before friction motion due to more severe mechanical damage. This phenomenon might indicate that the mechanical damage caused by wear would accelerate the corrosion process.

Key wordshigh entropy alloy coating    atmospheric plasma spraying    tribo-corrosion    passivation
收稿日期: 2024-02-26      32134.14.1005.4537.2024.060
ZTFLH:  TG172  
基金资助:湖北隆中实验室开放资金(2022KF-11);江苏省“双创博士”人才项目(1711220035);江苏大学高级人才启动基金(55012-20008)
通讯作者: 曹甫洋,E-mail:fuyangcao@ujs.edu.cn,研究方向为过渡金属氮化物硬质耐磨涂层制备、微观结构及性能研究,热喷涂高熵合金涂层腐蚀磨损行为研究
Corresponding author: CAO Fuyang, E-mail: fuyangcao@ujs.edu.cn
作者简介: 曹甫洋,男,1987年生,博士,副教授
图1  FeCoCrNiMn高熵合金涂层的XRD谱
图2  FeCoCrNiMn高熵合金涂层截面的SEM图像
RegionFeCoCrNiMnO
Spot154.48-22.1814.438.91-
Spot231.9815.3412.1410.299.6310.6
Spot3-17.71-12.76-69.53
表1  FeCoCrNiMn高熵合金涂层截面EDS元素分析
图3  高熵合金涂层和304不锈钢基底的显微硬度
图4  高熵合金涂层在3.5%NaCl溶液和去离子水中不同载荷下的开路电位和摩擦系数随时间变化曲线
图5  高熵合金涂层在不同载荷下3.5%NaCl溶液和去离子水中的磨痕截面轮廓曲线和磨损量
图6  高熵合金涂层在在不同载荷下3.5%NaCl溶液中的磨痕形貌及EDS面扫描
图7  高熵合金涂层在在不同载荷下去离子水中的磨痕形貌及EDS面扫描
RegionFeCoCrNiMnOSi
Spot13.482.813.692.243.2973.8610.62
Spot23.762.032.142.852.8976.569.77
Spot35.764.726.045.795.1564.887.66
Spot45.024.755.255.973.4668.537.02
表2  高熵合金涂层在在不同载荷下3.5%NaCl溶液和去离子水中的磨痕表面的EDS分析结果 (atomtic fraction / %)
1 Cao C J, Wang Y F, Zhang C X, et al. Tribocorrosion behavior of laser cladding fecrnicomocubsi high entropy alloy coating [J]. Rare Metal Mat. Eng., 2023, 52: 1439
1 (曹琛婕, 王彦芳, 张存修 等. 激光熔覆FeCrNiCoMoCuBSi高熵合金涂层的腐蚀磨损性能 [J]. 稀有金属材料与工程, 2023, 52: 1439)
2 Yu Y, Xu N N, Zhu S Y, et al. A novel Cu-doped high entropy alloy with excellent comprehensive performances for marine application [J]. J. Mater. Sci. Technol., 2021, 69: 48
doi: 10.1016/j.jmst.2020.08.016
3 Yeh J W. Recent progress in high entropy alloys [J]. Ann. Chim. Sci. Mat., 2006, 31: 633
4 Zhan S W, Tang J H, Wang F T, et al. Tribological behavior of laser clad TiZrHfCrMoW high-entropy alloy coating in air and in simulated body solution [J]. Surf. Technol., 2023, 52(1): 29
4 (湛思唯, 汤军辉, 王奉涛 等. 激光熔覆TiZrHfCrMoW涂层在大气和模拟体液环境下的摩擦磨损行为 [J]. 表面技术, 2023, 52(1): 29)
5 Zhang W, Wang Z P, Ma D P, et al. Microstructure and corrosion resistance of AlCo x CrFeNiCu high entropy alloy coating synthesized by induction remelting [J]. Nonferr. Met. Sci. Eng., 2023, 13(11): 23
5 (张 维, 王志鹏, 马登潘 等. 感应重熔合成AlCo x CrFeNiCu高熵合金涂层的组织与耐腐蚀性能 [J]. 有色金属工程, 2023, 13(11): 23)
6 Zhou Y J, Zhang Y, Kim T N, et al. Microstructure characterizations and strengthening mechanism of multi-principal component AlCoCrFeNiTi0.5 solid solution alloy with excellent mechanical properties [J]. Mater. Lett., 2008, 62: 2673
7 Wang K, Li C P, Lu J L, et al. Cavitation resistance of NiCoCrFeNb0.45 eutectic high entropy alloy for hydraulic machinery [J]. J. Chin. Soc. Corros. Prot., 2023, 43(5): 1079
7 (王 凯, 李晨沛, 卢金玲 等. NiCoCrFeNb0.45共晶高熵合金在水力机械中的抗空蚀性能研究 [J]. 中国腐蚀与防护学报, 2023, 43(5): 1079)
8 Chikumba S, Rao V V. High entropy alloys: development and applications [A]. Proceedings of the 7th International Conference on Latest Trends in Engineering & Technology (ICLTET’2015) [C]. Pretoria (South Africa), 2015: 1
9 Yeh J W, Chen Y L, Lin S J, et al. High-entropy alloys-a new era of exploitation [A]. Advanced Structural Materials III: Advanced Structural Materials Symposium of the Annual Congress of the Mexican Academy of Materials Science [C]. Cancún, Quintana Roo, Mexico, 2007: 1
10 Yeh J W. Overview of high-entropy alloys [A]. GaoM C, YehJ W, LiawP K, et al. High-Entropy Alloys: Fundamentals and Applications [M]. Cham: Springer, 2016: 1
11 Moravcik I, Cizek J, Zapletal J, et al. Microstructure and mechanical properties of Ni1,5Co1,5CrFeTi0,5 high entropy alloy fabricated by mechanical alloying and spark plasma sintering [J]. Mater. Des., 2017, 119: 141-
12 Li Y Z, Shi Y. Microhardness, wear resistance, and corrosion resistance of AlxCrFeCoNiCu high-entropy alloy coatings on aluminum by laser cladding [J]. Opt. Laser Technol., 2021, 134: 106632.
13 Liu Q, Wang X Y, Huang Y B, et al. Effect of molybdenum content on microstructure and corrosion resistance of CoCrFeNiMo high entropy alloy [J]. J. Mater. Res., 2020, 34: 868
13 (刘 谦, 王昕阳, 黄燕滨 等. Mo含量对 CoCrFeNiMo高熵合金组织及耐蚀性能的影响 [J]. 材料研究学报, 2020, 34: 868)
14 Pei S B, Wan D Y, Zhou P, et al. Research progress on preparation, microstructure, oxidation-and corrosion-resistance of high-entropy alloy coatings [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 873
14 (裴书博, 万冬阳, 周 萍 等. 高熵涂层的制备工艺、组织结构和抗氧化腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 873)
doi: 10.11902/1005.4537.2021.249
15 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
16 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, 375-377A: 213
17 Cao W P, Li J, Sun X B, et al. Research status of preparation technology of CoCrFeMnNi high-entropy alloy [J/OL]. Mater. Rep.: 1-24 [2024-02-25]. .
17 (曹炜鹏, 李 杰, 孙小斌 等. CoCrFeMnNi系高熵合金制备技术研究现状 [J/OL]. 材料导报: 1-24 [2024-02-25].
18 Zheng S J, Cai Z B, Pu J B, et al. Passivation behavior of VAlTiCrSi amorphous high-entropy alloy film with a high corrosion-resistance in artificial sea water [J]. Appl. Surf. Sci., 2021, 542: 148520
19 Cao H B, Hou G L, Xu T C, et al. Effect of seawater temperature on the corrosion and cavitation erosion-corrosion resistance of Al10Cr28Co28Ni34 high-entropy alloy coating [J]. Corros. Sci., 2024, 228: 111822
20 Liang H, Miao J W, Gao B Y, et al. Microstructure and tribological properties of AlCrFe2Ni2W0.2Mo0.75 high-entropy alloy coating prepared by laser cladding in seawater, NaCl solution and deionized water [J]. Surf. Coat. Technol., 2020, 400: 126214
21 Bi D, Chang Y, Luo H, et al. Corrosion behavior and passive film characteristics of AlNbTiZrSix high-entropy alloys in simulated seawater environment [J]. Corros. Sci., 2023, 224: 111530
22 Shi Y G, Zhang T B, Dou H C, et al. Study on corrosion properties of AlCoCrFeNiCu high entropy alloy in different media [J]. Hot Work. Technol., 2011, 40(18): 1
22 (史一功, 张铁邦, 寇宏超 等. AlCoCrFeNiCu高熵合金的电化学腐蚀性能研究 [J]. 热加工工艺, 2011, 40(18): 1)
23 Wu L T, Zhou Z H, Zhang X, et al. Long-term corrosion resistance of plasma sprayed FeCrMoCBY Fe-based amorphous coating in 3.5%NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 717
23 (吴林涛, 周泽华, 张 欣 等. 等离子喷涂FeCrMoCBY铁基非晶涂层耐蚀性研究 [J]. 中国腐蚀与防护学报, 2021, 41: 717)
doi: 10.11902/1005.4537.2020.219
24 Liu D. Research status of plasma technology in preparation of NiCrBSi and its composite coatings [J]. Weld. Technol., 2023, 52(4): 6
24 (刘 铎. 等离子技术在NiCrBSi及其复合涂层制备中的研究现状 [J]. 焊接技术, 2023, 52(4): 6)
25 Huang S F, Zeng X L, Peng Z, et al. Research progress in high entropy alloy coatings [J]. Spec. Cast. Nonferr. Alloys, 2023, 43: 876
25 (黄绍服, 曾祥领, 彭 振 等. 高熵合金涂层研究进展 [J]. 特种铸造及有色合金, 2023, 43: 876)
26 Zhao B Z, Zhu M, Yuan Y F, et al. Comparison of corrosion resistance of CoCrFeMnNi high entropy alloys with pipeline steels in an artificial alkaline soil solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 425
26 (赵宝珠, 朱 敏, 袁永锋 等. CoCrFeMnNi高熵合金和管线钢在碱性土壤环境中的耐蚀性对比研究 [J]. 中国腐蚀与防护学报, 2022, 42: 425)
doi: 10.11902/1005.4537.2021.161
27 Cui H Z, Lian X J. Research of corrosion and wear resistance coatings in marine engineering environment [J]. Chin. J. Nonferr. Met., 2023, 33: 1179
27 (崔洪芝, 练晓娟. 海洋耐蚀耐磨涂层研究进展 [J]. 中国有色金属学报, 2023, 33: 1179)
[1] 董征, 毛永祺, 孟洲, 陈向翔, 付传清, 陆晨涛. 应力作用下钢筋在模拟混凝土孔隙液中的钝化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1547-1556.
[2] 张雅妮, 王思敏, 樊冰. TC4钛合金在O2 + CO2 气氛的高温高压模拟水沉积液中表面形成的钝化膜研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1518-1528.
[3] 史先飞, 陈晓华, 满成. HRB400钢在模拟混凝土孔隙液中的自然钝化行为及耐蚀性能的研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1213-1222.
[4] 彭文山, 邢少华, 钱峣, 蔺存国, 侯健, 张大磊. 流动海水冲刷下TA2纯钛管路钝化膜腐蚀特性研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1038-1046.
[5] 邢少华, 彭文山, 钱峣, 李相波, 马力, 张大磊. 海水流速对经抛光和钝化表面处理的2205不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
[6] 耿真真, 张钰柱, 杜小将, 吴汉辉. S2-Cl-316L奥氏体不锈钢的腐蚀钝化行为的协同作用[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[7] 张成龙, 张斌, 朱敏, 袁永锋, 郭绍义, 尹思敏. CoCrNi中熵合金在不同浓度NH4Cl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 725-734.
[8] 刘国强, 张东方, 陈昊翔, 范志宏. 带轧皮预锈钢筋在混凝土养护期间的自然钝化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 505-511.
[9] 商百慧, 马元泰, 孟美江, 李瑛, 娄明, 白晶. HRB400钢筋在模拟混凝土孔隙液环境中的阳极极化特征[J]. 中国腐蚀与防护学报, 2024, 44(2): 422-428.
[10] 刘国强, 张东方, 陈昊翔, 范志宏, 熊建波, 吴清发. 2304双相不锈钢钢筋在混凝土孔隙模拟液中的电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 204-212.
[11] 毛飞雄, 周羽婷, 姚文清, 沈翔, 肖龙, 李明辉. 基于PDM304不锈钢钝化膜生长动力学研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
[12] 贺志豪, 贾建文, 李阳, 张威, 徐芳泓, 侯利锋, 卫英慧. 超级奥氏体不锈钢在模拟烟气脱硫冷凝液中的钝化行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 408-414.
[13] 李文桔, 张慧霞, 张宏泉, 郝福耀, 仝宏韬. 温度对钛合金应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 111-118.
[14] 薛芳, 刘两雨, 谭龙. Q235钢在不同浓度碳酸氢钠溶液中的有氧腐蚀行为[J]. 中国腐蚀与防护学报, 2022, 42(5): 771-778.
[15] 张媛, 张弦, 陈思雨, 李腾, 刘静, 吴开明. 磷酸浓度对316L不锈钢耐蚀性及钝化膜特性的影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 819-825.