|
|
选区激光熔化成形含Cu中熵合金的微观组织及耐腐蚀性能 |
易铄1, 周生璇1, 叶鹏1, 杜晓洁1, 徐震霖1,2, 何宜柱1,2( ) |
1.安徽工业大学材料科学与工程学院 马鞍山 243032 2.安徽工业大学 材料与加工安徽省重点实验室 马鞍山 243032 |
|
Microstructure and Corrosion Resistance of Cu-containing Fe-Mn-Cr-Ni Medium-entropy Alloy Prepared by Selective Laser Melting |
YI Shuo1, ZHOU Shengxuan1, YE Peng1, DU Xiaojie1, XU Zhenlin1,2, HE Yizhu1,2( ) |
1. School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243032, China 2. Anhui Key Laboratory of Materials and Processing, Anhui University of Technology, Ma'anshan 243032, China |
引用本文:
易铄, 周生璇, 叶鹏, 杜晓洁, 徐震霖, 何宜柱. 选区激光熔化成形含Cu中熵合金的微观组织及耐腐蚀性能[J]. 中国腐蚀与防护学报, 2024, 44(6): 1589-1600.
Shuo YI,
Shengxuan ZHOU,
Peng YE,
Xiaojie DU,
Zhenlin XU,
Yizhu HE.
Microstructure and Corrosion Resistance of Cu-containing Fe-Mn-Cr-Ni Medium-entropy Alloy Prepared by Selective Laser Melting[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1589-1600.
1 |
Hou S, Sun M Y, Bai M J, et al. A hybrid prediction frame for HEAs based on empirical knowledge and machine learning [J]. Acta Mater., 2022, 228: 117742
|
2 |
George E P, Curtin W A, Tasan C C. High entropy alloys: A focused review of mechanical properties and deformation mechanisms [J]. Acta Mater., 2020, 188: 435
doi: 10.1016/j.actamat.2019.12.015
|
3 |
Zhang L S, Ma G L, Fu L C, et al. Recent progress in high-entropy alloys [J]. Adv. Mat. Res., 2013, 631-632: 227
|
4 |
Chang X T, Song J Q, Wang B, et al. Effect of micro-alloying with Cr, N and Al on corrosion resistance of high manganese austenitic steel in acidic salt spray environment [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 47
|
4 |
(常雪婷, 宋嘉琪, 王冰 等. 微合金化对高锰奥氏体钢在酸性盐雾环境下的耐蚀性能影响研究 [J]. 中国腐蚀与防护学报, 2024, 44: 47)
|
5 |
Han B L, Zhang C C, Feng K, et al. Additively manufactured high strength and ductility CrCoNi medium entropy alloy with hierarchical microstructure [J]. Mater. Sci. Eng., 2021, 820A: 141545
|
6 |
Jiang H, Nai Q L, Xu C, et al. Sensitive temperature and reason of rapid fatigue crack propagation in nickel-based superalloy [J]. Acta Metall. Sin., 2023, 59: 1190
doi: 10.11900/0412.1961.2023.00151
|
6 |
(江 河, 佴启亮, 徐 超 等. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因 [J]. 金属学报, 2023, 59: 1190)
|
7 |
Shang J, Gu Y, Zhao J, et al. Corrosion behavior in molten salts at 850 ℃ and its effect on mechanical properties of Hastelloy X alloy fabricated by additive manufacturing [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 671
|
7 |
(尚 进, 古 岩, 赵 京 等. 增材制造Hastelloy X合金在850℃混合硫酸盐中热腐蚀行为及其对力学性能的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 671)
|
8 |
Wang Y Q, Liu B, Yan K, et al. Probing deformation mechanisms of a FeCoCrNi high-entropy alloy at 293 and 77 K using in situ neutron diffraction [J]. Acta Mater., 2018, 154: 79
|
9 |
Gu D D, Wang H Q, Chang F, et al. Selective laser melting additive manufacturing of TiC/AlSi10Mg bulk-form nanocomposites with tailored microstructures and properties [J]. Phys. Procedia, 2014, 56: 108
|
10 |
Xia X J, Wan X Y, Chen Y X, et al. Effect of heat treatments on corrosion behavior of 3Cr low carbon steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 656
|
10 |
(夏晓健, 万芯媛, 陈云翔 等. 两种热处理工艺对3Cr钢腐蚀行为影响及机理研究 [J]. 中国腐蚀与防护学报, 2023, 43: 656)
doi: 10.11902/1005.4537.2022.195
|
11 |
Zhu Z G, Ma K H, Yang X, et al. Annealing effect on the phase stability and mechanical properties of (FeNiCrMn)(100- x) Cox high entropy alloys [J]. J. Alloy. Compd., 2017, 695: 2945
|
12 |
Zhou C S, Wu F Y, Tang D, et al. Effect of subcritical-temperature heat treatment on corrosion of SLM SS316L with different process parameters [J]. Corros. Sci., 2023, 218: 111214
|
13 |
Sarkar S, Mukherjee S, Kumar C S, et al. Effects of heat treatment on microstructure, mechanical and corrosion properties of 15-5 PH stainless steel parts built by selective laser melting process [J]. J Manuf. Process., 2020, 50: 279
doi: 10.1016/j.jmapro.2019.12.048
|
14 |
Xi T, Shahzad M B, Xu D K, et al. Effect of copper addition on mechanical properties, corrosion resistance and antibacterial property of 316L stainless steel [J]. Mater. Sci. Eng., 2017, 71C: 1079
|
15 |
Wu W, Dai Z Y, Liu Z Y, et al. Synergy of Cu and Sb to enhance the resistance of 3%Ni weathering steel to marine atmospheric corrosion [J]. Corros. Sci., 2021, 183: 109353
|
16 |
Xu Q F, Gao K W, Lv W T, et al. Effects of alloyed Cr and Cu on the corrosion behavior of low-alloy steel in a simulated groundwater solution [J]. Corros. Sci., 2016, 102: 114
|
17 |
Elangeswaran C, Cutolo A, Muralidharan G K, et al. Effect of post-treatments on the fatigue behaviour of 316L stainless steel manufactured by laser powder bed fusion [J]. Int. J. Fatigue, 2019, 123: 31
|
18 |
Prashanth K G, Eckert J. Formation of metastable cellular microstructures in selective laser melted alloys [J]. J. Alloy. Compd., 2017, 707: 27
|
19 |
Wang P J, Zhao J B, Ma L W, et al. Effect of grain ultra-refinement on microstructure, tensile property, and corrosion behavior of low alloy steel [J]. Mater. Charact., 2021, 179: 111385
|
20 |
Li W J, Che X Y, Tang Y C, et al. Effect of plastic deformation processing on corrosion behavior of pure zinc in a leaching solution of soil at Tianjin [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 497
|
20 |
(李文杰, 车晓钰, 唐永存 等. 塑性变形加工对纯锌在天津土壤浸出液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2024, 44: 497)
doi: 10.11902/1005.4537.2023.108
|
21 |
Zhao J L, Zhai Z F, Sun D, et al. Antibacterial durability and biocompatibility of antibacterial-passivated 316L stainless steel in simulated physiological environment [J]. Mater. Sci. Eng., 2019, 100C: 396
|
22 |
Wang J Y, Li W H, Yang H L, et al. Corrosion behavior of CoCrNi medium-entropy alloy compared with 304 stainless steel in H2SO4 and NaOH solutions [J]. Corros. Sci., 2020, 177: 108973
|
23 |
Della Rovere C A, Alano J H, Silva R, et al. Characterization of passive films on shape memory stainless steels [J]. Corros. Sci., 2012, 57: 154
|
24 |
Lu Z, Zhang C C, Fang R R, et al. Microstructure evolution and corrosion behavior of the novel maraging stainless steel manufactured by selective laser melting [J]. Mater. Charact., 2022, 190: 112078
|
25 |
Wang Y, Qiu Y B, Chen Z Y, et al. Corrosion of polypyrrole: kinetics of chemical and electrochemical processes in NaOH solutions [J]. Corros. Sci., 2017, 118: 96
|
26 |
Luo H, Zou S W, Chen Y H, et al. Influence of carbon on the corrosion behaviour of interstitial equiatomic CoCrFeMnNi high-entropy alloys in a chlorinated concrete solution [J]. Corros. Sci., 2020, 163: 108287
|
27 |
Xu Z L, Zhang H, Du X J, et al. Corrosion resistance enhancement of CoCrFeMnNi high-entropy alloy fabricated by additive manufacturing [J]. Corros. Sci., 2020, 177: 108954
|
28 |
Jabs T, Borthen P, Strehblow H H. X‐ray photoelectron spectroscopic examinations of electrochemically formed passive layers on Ni‐Cr alloys [J]. J. Electrochem. Soc., 1997, 144: 1231
|
29 |
Marcus P, Grimal J M. The anodic dissolution and passivation of NiCrFe alloys studied by ESCA [J]. Corros. Sci., 1992, 33: 805
|
30 |
Zhao B Z, Zhu M, Yuan Y F, et al. Comparison of corrosion resistance of CoCrFeMnNi high entropy alloys with pipeline steels in an artificial alkaline soil solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 425
|
30 |
(赵宝珠, 朱 敏, 袁永锋 等. CoCrFeMnNi高熵合金和管线钢在碱性土壤环境中的耐蚀性对比研究 [J]. 中国腐蚀与防护学报, 2022, 42: 425)
doi: 10.11902/1005.4537.2021.161
|
31 |
Li Z, Wan H X, Song D D, et al. Corrosion behavior of X80 pipeline steel in the presence of Brevibacterium halotolerans in Beijing soil [J]. Bioelectrochemistry, 2019, 126: 121
|
32 |
Li D, Liang Y, Liu X X, et al. Corrosion behavior of Ti3AlC2 in NaOH and H2SO4 [J]. J. Eur. Ceram. Soc., 2010, 30: 3227
|
33 |
Tian D H, Jiao H D, Xiao J S, et al. The corrosion behavior of a Ni0.91Cr0.04Cu0.05 anode for the electroreduction of Fe2O3 in molten NaOH [J]. J. Alloy. Compd., 2018, 769: 977
|
34 |
Gao Z Y, Jiang B, Fan Z B, et al. Corrosion behavior of typical grounding materials in artificial alkaline soil solution [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 191
|
34 |
(高智悦, 姜 波, 樊志彬 等. 典型接地材料在碱性土壤模拟液中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 191)
doi: 10.11902/1005.4537.2022.061
|
35 |
Wu J F, Zheng X W, Li W P, et al. Copper corrosion inhibition by combined effect of inhibitor and passive film in alkaline solution [J]. Res. Chem. Intermed., 2015, 41: 8557
|
36 |
Yin Y Y, Li H X, Pan S H, et al. Electrochemical behaviour of passivation film formed on SLM-fabricated Hastelloy X superalloy surface in 10wt% NaNO3 solution [J]. Corros. Sci., 2022, 206: 110494
|
37 |
Kong D C, Dong C F, Ni X Q, et al. Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes [J]. J. Mater. Sci. Technol., 2019, 35: 1499
doi: 10.1016/j.jmst.2019.03.003
|
38 |
Fattah-Alhosseini A, Golozar M A, Saatchi A, et al. Effect of solution concentration on semiconducting properties of passive films formed on austenitic stainless steels [J]. Corros. Sci., 2010, 52: 205
|
39 |
Ben Rhouma A, Amadou T, Sidhom H, et al. Correlation between microstructure and intergranular corrosion behavior of low delta-ferrite content AISI 316L aged in the range 550-700oC [J]. J. Alloy. Compd., 2017, 708: 871
|
40 |
Shang Q, Man C, Pang K, et al. Mechanism of post-heat treatment on intergranular corrosion behavior of SLM-316L stainless steel with different carbon content [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1273
|
40 |
(商 强, 满 成, 逄 昆 等. 后热处理对不同含碳量SLM-316L不锈钢晶间腐蚀行为的作用机制研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1273)
|
41 |
Lewis M H, Hattersley B. Precipitation of M23C6 in austenitic steels Precipitation de carbures M23C6, dans les aciers austenitiquesAusscheidung von M23C6 in austenitischen stählen [J]. Acta Metall., 1965, 13: 1159
|
42 |
Kaneko K, Fukunaga T, Yamada K, et al. Formation of M23C6-type precipitates and chromium-depleted zones in austenite stainless steel [J]. Scr. Mater., 2011, 65: 509
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|