|
|
T2铜合金和Q235钢在模拟北山地下水环境中的电偶腐蚀行为研究 |
庞洁1,2, 刘相局1( ), 刘娜珍1( ), 侯保荣1 |
1.中国科学院海洋研究所 海洋环境腐蚀与生物污损重点实验室 青岛 266071 2.中国科学院大学 北京 100101 |
|
Galvanic Corrosion of T2 Cu-alloy and Q235 Steel in Simulated Beishan Groundwater Environment |
PANG Jie1,2, LIU Xiangju1( ), LIU Nazhen1( ), HOU Baorong1 |
1. Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China 2. University of Chinese Academy of Sciences, Beijing 100101, China |
引用本文:
庞洁, 刘相局, 刘娜珍, 侯保荣. T2铜合金和Q235钢在模拟北山地下水环境中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1435-1442.
Jie PANG,
Xiangju LIU,
Nazhen LIU,
Baorong HOU.
Galvanic Corrosion of T2 Cu-alloy and Q235 Steel in Simulated Beishan Groundwater Environment[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1435-1442.
1 |
Torjman M, Shaaban H. Nuclear energy as a primary source for a clean hydrogen energy system [J]. Energy Convers. Manag., 1998, 39: 27
|
2 |
Wang J. High-level radioactive waste disposal in China: update 2010 [J]. J. Rock Mech. Geotech. Eng., 2010, 2: 1
|
3 |
Wei X, Dong J H, Ke W. Progress on a corrosion study of low carbon steel for HLW container in a simulated geological disposal environment in China [J]. Corros. Commun., 2021, 1: 10
|
4 |
King F. Container materials for the storage and disposal of nuclear waste [J]. Corrosion, 2013, 69: 986
|
5 |
Metcalf P, Batandjieva B. International safety standards for radioactive waste (RAW) management and remediation of contaminated sites [A]. LeeWE, OjovanMI, JantzenCM. Radioactive Waste Management and Contaminated Site Clean-Up: Processes, Technologies and International Experience [M]. New Delhi: Woodhead Publishing, 2013: 73
|
6 |
Wang J. Progress of geological disposal of high-level radioactive waste in China in the 21st Century [J]. At. Energy Sci. Technol., 2019, 53: 2072
|
6 |
(王 驹. 中国高放废物地质处置21世纪进展 [J]. 原子能科学技术, 2019, 53: 2072)
|
7 |
Wang J. On area-specific underground research laboratory for geological disposal of high-level radioactive waste in China [J]. J. Rock Mech. Geotech. Eng., 2014, 6: 99
|
8 |
Chapman N, Hooper A. The disposal of radioactive wastes underground [J]. Proc. Geol. Assoc., 2012, 123: 46
|
9 |
Johnson L, King F. The effect of the evolution of environmental conditions on the corrosion evolutionary path in a repository for spent fuel and high-level waste in Opalinus Clay [J]. J. Nucl. Mater., 2008, 379: 9
|
10 |
Shoesmith D W. Assessing the corrosion performance of high-level nuclear waste containers [J]. Corrosion, 2006, 62: 703
|
11 |
Gras J M. Life prediction for HLW containers-issues related to long-term extrapolation of corrosion resistance [J]. C. R. Phys., 2002, 3: 891
|
12 |
King F. Factors in the selection of container materials for the disposal of HLW/SF [J]. MRS Online Proc. Libr., 2012, 1475: 241
|
13 |
Xue F, Wei X, Dong J H, et al. Research progress on corrosion behavior of low carbon steel in deep geological disposal environment of high-level waste [J]. Corros. Sci. Prot. Technol., 2015, 27: 497
|
13 |
(薛 芳, 魏 欣, 董俊华 等. 高放废物深地质处置环境中低碳钢腐蚀行为的研究进展 [J]. 腐蚀科学与防护技术, 2015, 27: 497)
|
14 |
Sun Y P, Wei X, Dong J H, et al. Understanding the role of alloyed Ni and Cu on improving corrosion resistance of low alloy steel in the simulated Beishan groundwater [J]. J. Mater. Sci. Technol., 2022, 130: 124
doi: 10.1016/j.jmst.2022.03.037
|
15 |
Zhang Q C, Zheng M, Huang Y L, et al. Corrosion behaviour of carbon steel, titanium and titanium alloy in simulated underground water in Beishan area preselected for nuclear waste repository in China [J]. Corros. Eng. Sci. Technol., 2017, 52: 425
|
16 |
Liu C S, Wang J Q, Zhang Z M, et al. Studies on corrosion behaviour of low carbon steel canister with and without γ-irradiation in China's HLW disposal repository [J]. Corros. Eng. Sci. Technol., 2017, 52: 136
|
17 |
Standish T, Chen J, Jacklin R, et al. Corrosion of copper-coated steel high level nuclear waste containers under permanent disposal conditions [J]. Electrochim. Acta, 2016, 211: 331
|
18 |
Zheng M, Zhang Q C, Huang Y L, et al. Determination of representative ground-water for corrosion assessment of candidate materials used in beishan area preselected for high-level radioactive waste disposal repository [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 185
|
18 |
(郑 珉, 张琦超, 黄彦良 等. 中国高放废物处置库甘肃北山预选区腐蚀研究用代表性地下水成分的确定 [J]. 中国腐蚀与防护学报, 2016, 36: 185)
|
19 |
Wang H L. Study on regional groundwater flow simulation and rock mass permeability characteristics in Beishan preselection area of high level radioactive waste disposal repository [D]. Beijing: Beijing Research Institute of Uranium Geology, 2014: 25
|
19 |
(王海龙. 高放废物处置库北山预选区区域地下水流模拟及岩体渗透特征研究 [D]. 北京: 核工业北京地质研究院, 2014: 25)
|
20 |
Standish T E, Braithwaite L J, Shoesmith D W, et al. Influence of area ratio and chloride concentration on the galvanic coupling of copper and carbon steel [J]. J. Electrochem. Soc., 2019, 166: C3448
doi: 10.1149/2.0521911jes
|
21 |
Liu Q B, Liu Z D, Guo S Y, et al. Galvanic corrosion behavior of 5083 al-alloy and 30CrMnSiA steel in NaCl solutions [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 883
|
21 |
(刘泉兵, 刘宗德, 郭胜洋 等. 5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究 [J]. 中国腐蚀与防护学报, 2021, 41: 883)
doi: 10.11902/1005.4537.2020.184
|
22 |
Wang C L, Wu J H, Li Q F. Recent advances and prospect of galvanic corrosion in marine environment [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 416
|
22 |
(王春丽, 吴建华, 李庆芬. 海洋环境电偶腐蚀研究现状与展望 [J]. 中国腐蚀与防护学报, 2010, 30: 416)
|
23 |
Cramer S D. Solubility of methane in brines from 0 to 300oC [J]. Ind. Eng. Chem. Process Des. Dev., 1984, 23: 533
|
24 |
Geng M, Duan Z H. Prediction of oxygen solubility in pure water and brines up to high temperatures and pressures [J]. Geochim. Cosmochim. Acta, 2010, 74: 5631
|
25 |
Hung G W, Dinius R H. Diffusivity of oxygen in electrolyte solutions [J]. J. Chem. Eng. Data, 1972, 17: 449
|
26 |
Xing W, Yin M, Lv Q, et al. Oxygen solubility, diffusion coefficient, and solution viscosity [A]. XingW, YinG P, ZhangJ J. Rotating Electrode Methods and Oxygen Reduction Electrocatalysts [M]. Elsevier, 2014: 1
|
27 |
England W A, Bennett M J, Greenhalgh D A, et al. The characterization by raman spectroscopy of oxide scales formed on a 20Cr-25Ni-Nb stabilized stainless steel [J]. Corros. Sci., 1986, 26: 537
|
28 |
Kiefer W. Recent advances in linear and nonlinear Raman spectroscopy I [J]. J. Raman Spectrosc., 2007, 38: 1538
|
29 |
Zhang X, Xiao K, Dong C F, et al. In situ Raman spectroscopy study of corrosion products on the surface of carbon steel in solution containing Cl- and SO2-4 [J]. Eng. Fail. Anal., 2011, 18: 1981
|
30 |
Nie X H, Li X G, Du C W, et al. Characterization of corrosion products formed on the surface of carbon steel by Raman spectroscopy [J]. J. Raman Spectrosc., 2009, 40: 76
|
31 |
De Faria D L A, Venâncio Silva S, De Oliveira M T. Raman microspectroscopy of some iron oxides and oxyhydroxides [J]. J. Raman Spectrosc., 1997, 28: 873
|
32 |
Réguer S, Neff D, Bellot-Gurlet L, et al. Deterioration of iron archaeological artefacts: micro-Raman investigation on Cl-containing corrosion products [J]. J. Raman Spectrosc., 2007, 38: 389
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|