Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (6): 1573-1580     CSTR: 32134.14.1005.4537.2024.016      DOI: 10.11902/1005.4537.2024.016
  研究报告 本期目录 | 过刊浏览 |
基于物理场耦合的交流干扰作用下埋地金属管线腐蚀数值仿真
王承涛1, 申冠一2, 许少毅2(), 李威2, 王禹桥2, 王树臣1, 闻东东1, 李朋宇3
1.徐州工程学院电气与控制工程学院 徐州 221018
2.中国矿业大学机电工程学院 徐州 221116
3.国网安徽省电力有限公司亳州供电公司 亳州 236800
Numerical Simulation of Corrosion of Buried Metal Pipeline Under AC Interference Based on Physical Field Coupling
WANG Chengtao1, SHEN Guanyi2, XU Shaoyi2(), LI Wei2, WANG Yuqiao2, WANG Shuchen1, WEN Dongdong1, LI Pengyu3
1. School of Electrical and Control Engineering, Xuzhou University of Technology, Xuzhou 221018, China
2. School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, China
3. Bozhou Power Supply Company, State Grid Anhui Electric Power Co., Ltd., Bozhou 236800, China
引用本文:

王承涛, 申冠一, 许少毅, 李威, 王禹桥, 王树臣, 闻东东, 李朋宇. 基于物理场耦合的交流干扰作用下埋地金属管线腐蚀数值仿真[J]. 中国腐蚀与防护学报, 2024, 44(6): 1573-1580.
Chengtao WANG, Guanyi SHEN, Shaoyi XU, Wei LI, Yuqiao WANG, Shuchen WANG, Dongdong WEN, Pengyu LI. Numerical Simulation of Corrosion of Buried Metal Pipeline Under AC Interference Based on Physical Field Coupling[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1573-1580.

全文: PDF(3507 KB)   HTML
摘要: 

本文构建了一种基于物理场耦合的埋地金属管线交流杂散电流腐蚀数值仿真模型,通过电场与电化学场的相互耦合作用,分析了静态周期和动态周期内钢轨电位和埋地金属管线表面电流密度分布规律,研究了金属管线埋地深度、与交流牵引系统相对角度、相对距离等因素对埋地金属管线表面电流密度分布规律的作用效果。结果表明,一个周期内的交流信号的动态特性和牵引电流整体变化的动态特性均会对埋地金属管线的交流腐蚀演化过程产生重要影响,同时埋地深度、与交流牵引系统相对角度和相对距离是评估埋地金属管线受交流腐蚀作用不可忽视的重要因素。

关键词 杂散电流交流腐蚀腐蚀仿真埋地金属管线交流牵引    
Abstract

AC electrified rail transit system will lead serious electrochemical corrosion to surrounding buried metal pipelines, which will severely threaten the structural integrity and service reliability of buried oil and gas pipelines. Numerical simulation is an effective method to study the distribution and variation of stray current corrosion macroscopically. In view of this, this paper proposed a numerical simulation model of AC stray current corrosion for buried metal pipeline based on the coupling of physical fields. Through the interaction of electric field and electrochemical field, the distribution patterns of rail potential and current density on the surface of buried metal pipeline during static and dynamic periods is analyzed. The effect of buried depth, relative angle and relative distance between metal pipeline and AC electrified rail transit system on the surface current density distribution were studied. Results show that in a given period the dynamic characteristics of AC signal and dynamic characteristics of overall change of traction current both have an important influence on the evolution process of AC corrosion of buried metal pipeline, and the buried depth, relative angle and relative distance are important factors that cannot be ignored to evaluate the AC corrosion effect for buried metal pipeline.

Key wordsstray current    AC corrosion    corrosion simulation    buried metal pipeline    AC electrified traction
收稿日期: 2024-01-10      32134.14.1005.4537.2024.016
ZTFLH:  TG172  
基金资助:江苏省自然科学基金(BK20221120)
通讯作者: 许少毅,E-mail:shaoyi@cumt.edu.cn,研究方向为光纤电流传感,地铁杂散电流腐蚀监测
Corresponding author: XU Shaoyi, E-mail: shaoyi@cumt.edu.cn
作者简介: 王承涛,男,1993年生,博士,讲师
图1  埋地金属管线交流杂散电流腐蚀仿真三维模型
Anodic/Cathodic reactionEquilibrium potential / VSCETafel slope (V/decade)I0 / A·cm-2
Oxidation reaction-0.8590.10832.353 × 10-7
Hydrogen evolution reaction-0.644-0.22301.457 × 10-6
表1  交流杂散电流腐蚀仿真极化动力学参数
ComponentResistivity / Ω·mRelative dielectric constant
Soil10015
Running rail1 × 10-61 × 107
Locomotive1 × 10-61 × 107
Traction substraction0.011
Buried metal pipeline1 × 10-71 × 107
Anti-corrosion coating1 × 1052.3
表2  仿真模型组件材料参数
图2  交流杂散电流腐蚀仿真模型的自由四面体网格划分
图3  轨道交通交流牵引曲线
图4  一个周期内土壤电解质电位分布(x-z平面)
图5  一个周期内不同时刻钢轨电位分布
图6  一个周期内不同时刻埋地金属管道表面电流密度分布
图7  不同埋地深度下的埋地金属管线表面电流密度分布
图8  不同铺设角度下的埋地金属管线交流杂散电流腐蚀仿真模型
图9  不同铺设角度下的埋地金属管线表面电流密度分布
图10  埋地管线不同位置下表面电流密度分布
图11  不同运行时刻下的电解质电位分布(y-z平面)
图12  不同时刻下的钢轨电位分布
图13  不同运行时刻下的埋地金属管道表面电流密度分布
1 Deng J L, Yan M C, Gao B W, et al. Corrosion behavior of pipeline steel under high-speed railway dynamic AC interference [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 127
1 (邓佳丽, 闫茂成, 高博文 等. 高铁动态交流干扰下管道钢的腐蚀行为试验研究 [J]. 中国腐蚀与防护学报, 2022, 42: 127)
doi: 10.11902/1005.4537.2021.212
2 Chen X, Ya S S, Li Y, et al. Protective effect of zinc strip in AC power supply metro on AC interference of buried pipelines [J]. Urban Rapid Rail Transit, 2023, 36(1): 141
2 (陈 霞, 崖尚松, 李 易 等. 交流供电地铁中锌带对埋地管道交流干扰的防护作用 [J]. 都市快轨交通, 2023, 36(1): 141)
3 Wei B X, Qin Q Y, Bai Y L, et al. Short-period corrosion of X80 pipeline steel induced by AC current in acidic red soil [J]. Eng. Failure Anal., 2019, 105: 156
4 Wang C T, Li W, Wang Y Q, et al. Predictive model for corrosion hazard of buried metallic structure caused by stray current in the subway [J]. Anti-Corros. Methods Mater., 2019, 66: 486
5 Xia X, Yang X F, Chen M L, et al. Time-frequency characteristics and corrosion behavior of dynamic stray current [J]. Urban Rapid Rail Transit, 2023, 36(5): 117
5 (夏 雪, 杨晓峰, 陈茂鲁 等. 动态杂散电流的时频特征及腐蚀行为研究 [J]. 都市快轨交通, 2023, 36(5): 117)
6 Li W, Du Y X, Jiang Z T, et al. Research progress on AC interference of electrified railway on buried pipeline [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 381
6 (李 伟, 杜艳霞, 姜子涛 等. 电气化铁路对埋地管道交流干扰的研究进展 [J]. 中国腐蚀与防护学报, 2016, 36: 381)
7 Li C C, He R B, Chen Y L, et al. Corrosion behavior of X65 steel by AC interference and cathodic protection [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 179
7 (李长春, 何仁碧, 陈以龙 等. 交流干扰与阴极保护共同作用对X65管线钢的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 179)
doi: 10.11902/1005.4537.2022.016
8 Qing Y C, Yang Z W, Xian J, et al. Corrosion behavior of Q235 steel under the interaction of alternating current and microorganisms [J]. Acta Metall. Sin., 2016, 52: 1142
doi: 10.11900/0412.1961.2016.00030
8 (卿永长, 杨志炜, 鲜 俊 等. 交流电和微生物共同作用下Q235钢的腐蚀行为 [J]. 金属学报, 2016, 52: 1142)
doi: 10.11900/0412.1961.2016.00030
9 Hong Y, Li Z H, Qiao G F, et al. Numerical simulation and experimental investigation of the stray current corrosion of viaducts in the high-speed rail transit system [J]. Constr. Build. Mater., 2017, 157: 416
10 Cai Z C, Zhang X W, Cheng H. Evaluation of DC-subway stray current corrosion with integrated multi-physical modeling and electrochemical analysis [J]. IEEE Access, 2019, 7: 168404
11 Jin H, Yu S. Effect of DC stray current on rebar corrosion in cracked segment of shield tunnel [J]. Constr. Build. Mater., 2021, 272: 121646
12 Cui G, Li Z L, Yang C, et al. The influence of DC stray current on pipeline corrosion [J]. Pet. Sci., 2016, 13: 135
13 Metwally I A, Al-Mandhari H M, Nadir Z, et al. Boundary element simulation of DC stray currents in oil industry due to cathodic protection interference [J]. Eur. Trans. Electr. Power, 2007, 17: 486
14 Peng Y Z, Gong F Y, Zhao Y X. Distribution of stray current induced corrosion of reinforced bars within concrete based on electric field analysis and experiment with transparent imitated concrete [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 813
14 (彭一展, 弓扶元, 赵羽习. 基于电场分析和仿混凝土实验的杂散电流腐蚀分布规律研究 [J]. 中国腐蚀与防护学报, 2022, 42: 813)
doi: 10.11902/1005.4537.2021.265
15 Zheng Y W, Huang X M, Gong Z L, et al. Simulation of subway stray current corrosion protection for buried steel gas pipeline network [J]. Gas Heat, 2020, 40(7): A35
15 (郑焱文, 黄小美, 龚智利 等. 埋地钢质燃气管网地铁杂散电流腐蚀防护模拟 [J]. 煤气与热力, 2020, 40(7): A35)
16 Li L M, Luo X Z, Shen X L. Calculation and simulation analysis of AC traction for metro EMUs [J]. Electr. Drive Locomot., 2003, (3): 30
16 (李立明, 罗晓峥, 沈祥林. 地铁电动车组交流牵引计算与仿真分析 [J]. 机车电传动, 2003, (3): 30)
[1] 贾静焕, 骆晨, 孙志华, 詹中伟, 赵明亮. 航空发动机典型连接件腐蚀仿真分析[J]. 中国腐蚀与防护学报, 2024, 44(4): 979-986.
[2] 郑重, 周远翔, 李永印. 锅炉电极材料交流腐蚀特性与选型研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 202-208.
[3] 彭一展, 弓扶元, 赵羽习. 基于电场分析和仿混凝土实验的杂散电流腐蚀分布规律研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 813-818.
[4] 庞涛, 刘静, 黄峰, 李闯, 赵国知, 黄先球, 郑建国, 程鹏. 武汉地铁钢轨在典型隧道环境中的腐蚀现状分析[J]. 中国腐蚀与防护学报, 2022, 42(5): 798-804.
[5] 邓佳丽, 闫茂成, 高博文, 张辉. 高铁动态交流干扰下管道钢的腐蚀行为试验研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 127-134.
[6] 梁毅, 杜艳霞. 交流干扰和阴极保护协同作用下的腐蚀评判标准与机理研究进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[7] 王晓霖, 闫茂成, 舒韵, 孙成, 柯伟. 破损涂层下管线钢的交流电干扰腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(4): 341-346.
[8] 王新华, 杨国勇, 黄海, 陈振华, 王丽梅. 埋地钢质管道交流杂散电流腐蚀规律研究[J]. 中国腐蚀与防护学报, 2013, 33(4): 293-297.
[9] 董亮,路民旭,杜艳霞,姜子涛. 埋地管道交流腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2011, 31(3): 173-178.
[10] 冯哲圣; 肖占文; 杨邦朝 . 铝箔交流扩面腐蚀中SO42-缓蚀机理的研究[J]. 中国腐蚀与防护学报, 2003, 23(2): 70-74 .
[11] 肖占文; 杨邦朝 . 交流负半周对高纯铝在盐酸溶液中点蚀行为的影响[J]. 中国腐蚀与防护学报, 1999, 19(4): 193-199 .
[12] 肖占文; 杨邦朝 . 铝箔交流腐蚀的阴极半周期间表面酸度变化与腐蚀产物膜的形成[J]. 中国腐蚀与防护学报, 1999, 19(4): 200-206 .
[13] 张三平;李跃喜;邹瑞海;尹世奇. 电解电容器铝箔纯交流腐蚀工艺影响因素的研究[J]. 中国腐蚀与防护学报, 1996, 16(2): 133-139.