|
|
Fe34Cr30Mo15Ni15Nb3Al3 高熵合金在500℃下氧含量为10-6%的液态铅铋合金中腐蚀行为研究 |
潘宗宇1,2, 刘静2( ), 姜志忠2,3, 罗林2,3, 贾寒冰2,3, 刘欣雨2,3 |
1 安徽大学 物质科学与信息技术研究院 合肥 230601 2 中国科学院合肥物质科学研究院核能安全技术研究所 合肥 230031 3 中国科学技术大学 合肥 230026 |
|
Corrosion Behavior of Fe34Cr30Mo15Ni15Nb3Al3 High-entropy Alloy in Molten Pb-Bi Eutectic Containing 10-6% Oxygen at 500oC |
PAN Zongyu1,2, LIU Jing2( ), JIANG Zhizhong2,3, LUO Lin2,3, JIA Hanbing2,3, LIU Xinyu2,3 |
1 Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China 2 Institute of Nuclear Energy Safety Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China 3 University of Science and Technology of China, Hefei 230026, China |
引用本文:
潘宗宇, 刘静, 姜志忠, 罗林, 贾寒冰, 刘欣雨. Fe34Cr30Mo15Ni15Nb3Al3 高熵合金在500℃下氧含量为10-6%的液态铅铋合金中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1353-1360.
Zongyu PAN,
Jing LIU,
Zhizhong JIANG,
Lin LUO,
Hanbing JIA,
Xinyu LIU.
Corrosion Behavior of Fe34Cr30Mo15Ni15Nb3Al3 High-entropy Alloy in Molten Pb-Bi Eutectic Containing 10-6% Oxygen at 500oC[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1353-1360.
1 |
Kelly J E. Generation IV international forum: a decade of progress through international cooperation [J]. Prog. Nucl. Energy, 2014, 77: 240
|
2 |
DOE-GIF G I F. A Technology Roadmap for Generation IV Nuclear Energy Systems [R]. Technical Report GIF2002200, GIF, 2002.
|
3 |
Li N. Lead-alloy coolant technology and materials-technology readiness level evaluation [J]. Prog. Nucl. Energy, 2008, 50: 140
|
4 |
Nuclear Energy Agency. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermalhydraulics and technologies [R]. Paris: Organisation for Economic Cooperation and Development, 2015
|
5 |
Müller G, Heinzel A, Konys J, et al. Behavior of steels in flowing liquid PbBi eutectic alloy at 420-600 ℃ after 4000-7200 h [J]. J. Nucl. Mater., 2004, 335: 163
|
6 |
Zhang J S. A review of steel corrosion by liquid lead and lead–bismuth [J]. Corros. Sci., 2009, 51: 1207
|
7 |
Gong X, Li R, Sun M Z, et al. Opportunities for the LWR ATF materials development program to contribute to the LBE-cooled ADS materials qualification program [J]. J. Nucl. Mater., 2016, 482: 218
|
8 |
Gorse D, Auger T, Vogt J B, et al. Influence of liquid lead and lead-bismuth eutectic on tensile, fatigue and creep properties of ferritic/martensitic and austenitic steels for transmutation systems [J]. J. Nucl. Mater., 2011, 415: 284
|
9 |
Li M Y, Jiang Z Z, Chen L L, et al. Study on corrosion products of T91 and 316L steels in oxygen controlled LBE for 600 hrs [J]. Nucl. Sci. Eng., 2018, 38: 784
|
9 |
李明扬, 姜志忠, 陈刘利 等. T91和316L钢在氧控铅铋中600小时后腐蚀产物分析 [J]. 核科学与工程, 2018, 38: 784
|
10 |
Tian S J, Zhang J W. Corrosion behavior of 316L and T91 steels in stagnant lead-bismuth eutectic at 550 °C [J]. J. Univ. Sci. Technol. China, 2015, 45(9): 751
|
10 |
田书建, 张建武. 316L和T91不锈钢在550℃静态铅铋合金中的腐蚀行为 [J]. 中国科学技术大学学报, 2015, 45(9): 751
|
11 |
Takaya S, Furukawa T, Müller G, et al. Al-containing ODS steels with improved corrosion resistance to liquid lead–bismuth [J]. J. Nucl. Mater., 2012, 428: 125
|
12 |
George E P, Curtin W A, Tasan C C. High entropy alloys: a focused review of mechanical properties and deformation mechanisms [J]. Acta Mater., 2020, 188: 435
|
13 |
Li Z Z, Zhao S T, Ritchie R O, et al. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys [J]. Prog. Mater. Sci., 2019, 102: 296
|
14 |
Sathiyamoorthi P, Kim H S. High-entropy alloys with heterogeneous microstructure: processing and mechanical properties [J]. Prog. Mater. Sci., 2022, 123: 100709
|
15 |
Zhang P, Jiang L, Yang J X, et al. Research progress in refractory high entropy alloys for nuclear applications [J]. Mater. Rep., 2022, 36: 22060260
|
15 |
张 平, 蒋 丽, 杨金学 等. 核用难熔高熵合金的研究进展 [J]. 材料导报, 2022, 36: 22060260
|
16 |
Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci, 2014, 61: 1
|
17 |
Huang Y H, Wang J B, Wang Z J, et al. Corrosion behavior of high strength AlCrFeNi multi-principal-component alloy in lead-bismuth alloy [J]. Nucl. Power. Eng., 2023, 44(S1): 137
|
17 |
黄赟浩, 王健斌, 王志军 等. 铅铋合金环境中高强AlCrFeNi多主元合金的腐蚀行为 [J]. 核动力工程, 2023, 44(S1): 137
|
18 |
Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys [J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200
pmid: 25160691
|
19 |
Shi H, Fetzer R, Jianu A, et al. Influence of alloying elements (Cu, Ti, Nb) on the microstructure and corrosion behaviour of AlCrFeNi-based high entropy alloys exposed to oxygen-containing molten Pb [J]. Corros. Sci., 2021, 190: 109659
|
20 |
Xu Y C, Song C, Zhang Y G, et al. An energetic evaluation of dissolution corrosion capabilities of liquid metals on iron surface [J]. Phys. Chem. Chem. Phys., 2014, 16: 16837
doi: 10.1039/c4cp01224k
pmid: 25005629
|
21 |
Yeh J W, Chang S Y, Hong Y D, et al. Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi-principal elements [J]. Mater. Chem. Phys., 2007, 103: 41
|
22 |
Li D D, Song C, He H Y, et al. An atomistic insight into the corrosion of the oxide film in liquid lead-bismuth eutectic [J]. Phys. Chem. Chem. Phys., 2014, 16: 7417
doi: 10.1039/c3cp54377c
pmid: 24626636
|
23 |
Shi H, Jianu A, Weisenburger A, et al. Corrosion resistance and microstructural stability of austenitic Fe-Cr-Al-Ni model alloys exposed to oxygen-containing molten lead [J]. J. Nucl. Mater., 2019, 524: 177
|
24 |
Gossé S. Thermodynamic assessment of solubility and activity of iron, chromium, and nickel in lead bismuth eutectic [J]. J. Nucl. Mater., 2014, 449: 122
|
25 |
Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys [J]. Acta Mater., 2013, 61: 4887
|
26 |
Lobnig R E, Schmidt H P, Hennesen K, et al. Diffusion of cations in chromia layers grown on iron-base alloys [J]. Oxid. Met., 1992, 37: 81
|
27 |
Huang D, Lu J S, Zhuang Y X, et al. The role of Nb on the high temperature oxidation behavior of CoCrFeMnNbxNi high-entropy alloys [J]. Corros. Sci., 2019, 158: 108088
|
28 |
Ide S, Funakawa Y, Kato Y, et al. Retardation of 20%Cr steel oxidation with Laves phase precipitation [J]. Mater. Sci. Forum, 2007, 539-543: 4887
|
29 |
Gong X, Xiao J, Wang H, et al. Corrosion behavior and mechanisms of ferritic/martensitic steels and austenitic stainless steels in liquid lead-bismuth eutectic [J]. Nucl. Sci. Eng., 2020, 40: 864
|
29 |
龚 星, 肖 军, 王 浩 等. 铁素体/马氏体钢和奥氏体不锈钢的液态铅铋腐蚀行为与机理 [J]. 核科学与工程, 2020, 40: 864
|
30 |
Luo W W, Huang Q Y, Luo L, et al. Effect of Ce on microstructure evolution of oxide scale for CLAM steel exposed to LBE containing 10-6 wt% oxygen at 500oC [J]. J. Nucl. Mater., 2023, 573: 154109
|
31 |
Hasegawa M. Ellingham diagram [A]. Seetharaman S. Treatise on Process Metallurgy: Volume 1: Process Fundamentals [M]. Amsterdam: Elsevier, 2014: 507
|
32 |
Stott F H, Wood G C, Stringer J. The influence of alloying elements on the development and maintenance of protective scales [J]. Oxid. Met., 1995, 44: 113
|
33 |
Wang H, Xiao J, Wang H, et al. Corrosion behavior and surface treatment of cladding materials used in high-temperature lead-bismuth eutectic alloy: a review [J]. Coatings, 2021, 11: 364
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|