Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (5): 1353-1360     CSTR: 32134.14.1005.4537.2023.331      DOI: 10.11902/1005.4537.2023.331
  研究报告 本期目录 | 过刊浏览 |
Fe34Cr30Mo15Ni15Nb3Al3 高熵合金在500℃下氧含量为10-6%的液态铅铋合金中腐蚀行为研究
潘宗宇1,2, 刘静2(), 姜志忠2,3, 罗林2,3, 贾寒冰2,3, 刘欣雨2,3
1 安徽大学 物质科学与信息技术研究院 合肥 230601
2 中国科学院合肥物质科学研究院核能安全技术研究所 合肥 230031
3 中国科学技术大学 合肥 230026
Corrosion Behavior of Fe34Cr30Mo15Ni15Nb3Al3 High-entropy Alloy in Molten Pb-Bi Eutectic Containing 10-6% Oxygen at 500oC
PAN Zongyu1,2, LIU Jing2(), JIANG Zhizhong2,3, LUO Lin2,3, JIA Hanbing2,3, LIU Xinyu2,3
1 Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
2 Institute of Nuclear Energy Safety Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
3 University of Science and Technology of China, Hefei 230026, China
引用本文:

潘宗宇, 刘静, 姜志忠, 罗林, 贾寒冰, 刘欣雨. Fe34Cr30Mo15Ni15Nb3Al3 高熵合金在500℃下氧含量为10-6%的液态铅铋合金中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1353-1360.
Zongyu PAN, Jing LIU, Zhizhong JIANG, Lin LUO, Hanbing JIA, Xinyu LIU. Corrosion Behavior of Fe34Cr30Mo15Ni15Nb3Al3 High-entropy Alloy in Molten Pb-Bi Eutectic Containing 10-6% Oxygen at 500oC[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1353-1360.

全文: PDF(9810 KB)   HTML
摘要: 

制备了Fe34Cr30Mo15Ni15Nb3Al3高熵合金,铸态组织包含FCC相、Laves相和B2-NiAl相。随后将高熵合金置于500℃、氧浓度为10-6%(质量分数)的液态铅铋合金中进行1000~2000 h的静态腐蚀实验。结果表明:高熵合金未发生明显的元素溶解、铅铋渗透和相变。静态腐蚀1000~2000 h后,Laves相区域表面只生成了Fe-Cr尖晶石。但腐蚀1000 h后,FCC/B2-NiAl相区域表面除了内层生成了Fe-Cr尖晶石,外层还生成了贫Cr的Fe-Cr尖晶石;随着腐蚀时间增加到1500 h,FCC/B2-NiAl相区域外层贫Cr的Fe-Cr尖晶石发生脱落;腐蚀2000 h后,Fe3O4开始生成,覆盖FCC/B2-NiAl相区域外表面。高熵合金表面的氧化层均较薄,厚度不超过3 µm,表现出较好的耐腐蚀性。高熵合金具有良好耐腐蚀的原因是由于Laves相分布均匀,抑制了金属元素的向外扩散。

关键词 Fe34Cr30Mo15Ni15Nb3Al3高熵合金液态铅铋合金腐蚀Laves相Fe-Cr尖晶石    
Abstract

In this paper, a high-entropy alloy Fe34Cr30Mo15Ni15Nb3Al3 was prepared via vacuum induction melting technique. The cast alloy consists of FCC phase, Laves phase and B2-NiAl phase. Then, the high-entropy alloy was subjected to corrosion test at 500oC in static molten Pb-Bi eutectic (MBE) containing 10-6% oxygen (in mass fraction) for 1000, 1500 and 2000 h, respectively. The results showed that after corrosion test, the high entropy alloy did not show obvious signs of being attacked by molten Pb-Bi eutectic, namely, there was no obvious dissolution of alloy components and phase transformation, and no obvious inward permeation of Pb and Bi from MBE into the alloy. Only a continuous Fe-Cr spinel scale was formed on the Laves phase region after static corrosion from 1000 h to 2000 h. It is worth mentioning in particular that after exposure for 1000 h, both of Fe-Cr spinel and Cr-depleted Fe-Cr spinel was formed on the surface of FCC/B2-NiAl phase region. As the corrosion time increased to 1500 h, the outer scale of Cr-depleted Fe-Cr spinel formed on the FCC/B2-NiAl phase region spalled off. After exposure for 2000 h, Fe3O4 was generated above the Fe-Cr spinel scale, and covered the entire surface of FCC/B2-NiAl phase region. In conclusion, the oxide scales formed on the high-entropy alloy are very thin and compact, with a maximum thickness less than 3 µm, so that the high-entropy alloy presented good resistance to MBE corrosion. The outstanding corrosion resistance of high-entropy alloy may be attributed to the homogeneous distribution of Laves phase, which effectively suppresses the outward diffusion of components of the high-entropy alloy.

Key wordsFe34Cr30Mo15Ni15Nb3Al3 high-entropy alloy    Liquid lead-bismuth eutectic alloy corrosion    Laves phase    Fe-Cr spinel
收稿日期: 2023-10-23      32134.14.1005.4537.2023.331
ZTFLH:  TG178  
基金资助:国家重点研发计划(2022YFB1902502);中国科学院合肥大科学中心重点研发项目(2022HSC-CIP028);中国科学院合肥物质科学研究院院长基金(YZJJ2022QN39)
通讯作者: 刘 静,E-mail:jing.liu@inest.cas.cn,研究方向为高温液态铅合金环境腐蚀及防护新材料
Corresponding author: LIU Jing, E-mail: jing.liu@inest.cas.cn
作者简介: 潘宗宇,男,1996年生,硕士生
图1  HEA-15合金腐蚀前的XRD谱
图2  HEA-15合金腐蚀前的微观组织
RegionFeCrMoNbAlNi
Map scanning34.529.814.92.92.915.0
Laves phase (white)29.120.623.713.41.711.5
FCC phase (gray)36.932.813.0-2.614.7
B2-NiAl phase (black)30.428.011.0-6.923.7
表1  HEA-15合金中各元素质量分数
图3  不同腐蚀时间后HEA-15合金表面的XRD谱
图4  不同腐蚀时间后HEA-15合金表面的微观形貌
RegionOFeCrNiAlMoNb
Point 135.622.223.27.53.36.22.0
Point 254.019.517.13.52.83.1-
Point 337.821.223.49.43.94.2-
Point 441.918.020.07.03.67.02.6
Point 536.624.423.48.33.14.2-
Point 629.626.423.98.93.46.51.3
Point 760.026.38.11.91.72.0-
表2  图4的点扫描数据 (atomic fraction / %)
图5  图2a中Laves相和图4a中氧化层凹陷区域宽度和长度对比
图6  HEA-15合金不同腐蚀时间后的截面形貌和EDS面扫描图
图7  HEA-15合金不同腐蚀时间后的线扫描结果
Oxide type1000 h1500 h2000 h
Fe-Cr Spinel1.121.241.93
Fe3O4--0.70
表3  不同腐蚀时间氧化层的厚度
1 Kelly J E. Generation IV international forum: a decade of progress through international cooperation [J]. Prog. Nucl. Energy, 2014, 77: 240
2 DOE-GIF G I F. A Technology Roadmap for Generation IV Nuclear Energy Systems [R]. Technical Report GIF2002200, GIF, 2002.
3 Li N. Lead-alloy coolant technology and materials-technology readiness level evaluation [J]. Prog. Nucl. Energy, 2008, 50: 140
4 Nuclear Energy Agency. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermalhydraulics and technologies [R]. Paris: Organisation for Economic Cooperation and Development, 2015
5 Müller G, Heinzel A, Konys J, et al. Behavior of steels in flowing liquid PbBi eutectic alloy at 420-600 ℃ after 4000-7200 h [J]. J. Nucl. Mater., 2004, 335: 163
6 Zhang J S. A review of steel corrosion by liquid lead and lead–bismuth [J]. Corros. Sci., 2009, 51: 1207
7 Gong X, Li R, Sun M Z, et al. Opportunities for the LWR ATF materials development program to contribute to the LBE-cooled ADS materials qualification program [J]. J. Nucl. Mater., 2016, 482: 218
8 Gorse D, Auger T, Vogt J B, et al. Influence of liquid lead and lead-bismuth eutectic on tensile, fatigue and creep properties of ferritic/martensitic and austenitic steels for transmutation systems [J]. J. Nucl. Mater., 2011, 415: 284
9 Li M Y, Jiang Z Z, Chen L L, et al. Study on corrosion products of T91 and 316L steels in oxygen controlled LBE for 600 hrs [J]. Nucl. Sci. Eng., 2018, 38: 784
9 李明扬, 姜志忠, 陈刘利 等. T91和316L钢在氧控铅铋中600小时后腐蚀产物分析 [J]. 核科学与工程, 2018, 38: 784
10 Tian S J, Zhang J W. Corrosion behavior of 316L and T91 steels in stagnant lead-bismuth eutectic at 550 °C [J]. J. Univ. Sci. Technol. China, 2015, 45(9): 751
10 田书建, 张建武. 316L和T91不锈钢在550℃静态铅铋合金中的腐蚀行为 [J]. 中国科学技术大学学报, 2015, 45(9): 751
11 Takaya S, Furukawa T, Müller G, et al. Al-containing ODS steels with improved corrosion resistance to liquid lead–bismuth [J]. J. Nucl. Mater., 2012, 428: 125
12 George E P, Curtin W A, Tasan C C. High entropy alloys: a focused review of mechanical properties and deformation mechanisms [J]. Acta Mater., 2020, 188: 435
13 Li Z Z, Zhao S T, Ritchie R O, et al. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys [J]. Prog. Mater. Sci., 2019, 102: 296
14 Sathiyamoorthi P, Kim H S. High-entropy alloys with heterogeneous microstructure: processing and mechanical properties [J]. Prog. Mater. Sci., 2022, 123: 100709
15 Zhang P, Jiang L, Yang J X, et al. Research progress in refractory high entropy alloys for nuclear applications [J]. Mater. Rep., 2022, 36: 22060260
15 张 平, 蒋 丽, 杨金学 等. 核用难熔高熵合金的研究进展 [J]. 材料导报, 2022, 36: 22060260
16 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci, 2014, 61: 1
17 Huang Y H, Wang J B, Wang Z J, et al. Corrosion behavior of high strength AlCrFeNi multi-principal-component alloy in lead-bismuth alloy [J]. Nucl. Power. Eng., 2023, 44(S1): 137
17 黄赟浩, 王健斌, 王志军 等. 铅铋合金环境中高强AlCrFeNi多主元合金的腐蚀行为 [J]. 核动力工程, 2023, 44(S1): 137
18 Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys [J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200 pmid: 25160691
19 Shi H, Fetzer R, Jianu A, et al. Influence of alloying elements (Cu, Ti, Nb) on the microstructure and corrosion behaviour of AlCrFeNi-based high entropy alloys exposed to oxygen-containing molten Pb [J]. Corros. Sci., 2021, 190: 109659
20 Xu Y C, Song C, Zhang Y G, et al. An energetic evaluation of dissolution corrosion capabilities of liquid metals on iron surface [J]. Phys. Chem. Chem. Phys., 2014, 16: 16837
doi: 10.1039/c4cp01224k pmid: 25005629
21 Yeh J W, Chang S Y, Hong Y D, et al. Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi-principal elements [J]. Mater. Chem. Phys., 2007, 103: 41
22 Li D D, Song C, He H Y, et al. An atomistic insight into the corrosion of the oxide film in liquid lead-bismuth eutectic [J]. Phys. Chem. Chem. Phys., 2014, 16: 7417
doi: 10.1039/c3cp54377c pmid: 24626636
23 Shi H, Jianu A, Weisenburger A, et al. Corrosion resistance and microstructural stability of austenitic Fe-Cr-Al-Ni model alloys exposed to oxygen-containing molten lead [J]. J. Nucl. Mater., 2019, 524: 177
24 Gossé S. Thermodynamic assessment of solubility and activity of iron, chromium, and nickel in lead bismuth eutectic [J]. J. Nucl. Mater., 2014, 449: 122
25 Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys [J]. Acta Mater., 2013, 61: 4887
26 Lobnig R E, Schmidt H P, Hennesen K, et al. Diffusion of cations in chromia layers grown on iron-base alloys [J]. Oxid. Met., 1992, 37: 81
27 Huang D, Lu J S, Zhuang Y X, et al. The role of Nb on the high temperature oxidation behavior of CoCrFeMnNbxNi high-entropy alloys [J]. Corros. Sci., 2019, 158: 108088
28 Ide S, Funakawa Y, Kato Y, et al. Retardation of 20%Cr steel oxidation with Laves phase precipitation [J]. Mater. Sci. Forum, 2007, 539-543: 4887
29 Gong X, Xiao J, Wang H, et al. Corrosion behavior and mechanisms of ferritic/martensitic steels and austenitic stainless steels in liquid lead-bismuth eutectic [J]. Nucl. Sci. Eng., 2020, 40: 864
29 龚 星, 肖 军, 王 浩 等. 铁素体/马氏体钢和奥氏体不锈钢的液态铅铋腐蚀行为与机理 [J]. 核科学与工程, 2020, 40: 864
30 Luo W W, Huang Q Y, Luo L, et al. Effect of Ce on microstructure evolution of oxide scale for CLAM steel exposed to LBE containing 10-6 wt% oxygen at 500oC [J]. J. Nucl. Mater., 2023, 573: 154109
31 Hasegawa M. Ellingham diagram [A]. Seetharaman S. Treatise on Process Metallurgy: Volume 1: Process Fundamentals [M]. Amsterdam: Elsevier, 2014: 507
32 Stott F H, Wood G C, Stringer J. The influence of alloying elements on the development and maintenance of protective scales [J]. Oxid. Met., 1995, 44: 113
33 Wang H, Xiao J, Wang H, et al. Corrosion behavior and surface treatment of cladding materials used in high-temperature lead-bismuth eutectic alloy: a review [J]. Coatings, 2021, 11: 364
[1] 董楠, 秦慰蓉, 韩培德. SCl表面吸附及其对 γ-FeM(111)(M = CrNiMnMoCuCe)腐蚀的理论研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1566-1572.
[2] 董征, 毛永祺, 孟洲, 陈向翔, 付传清, 陆晨涛. 应力作用下钢筋在模拟混凝土孔隙液中的钝化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1547-1556.
[3] 杨海云, 刘春泉, 熊芬, 陈敏纳, 谢岳林, 彭龙生, 孙胜, 刘海洲. 超高速激光熔覆制备耐腐蚀涂层研究进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 847-862.
[4] 何佳璇, 张羽彤, 管旭东, 唐建华, 黄海, 赵旭辉, 唐聿明, 左禹. 铝合金微通道换热器的腐蚀防护现状与进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 993-1000.
[5] 张成龙, 张斌, 朱敏, 袁永锋, 郭绍义, 尹思敏. CoCrNi中熵合金在不同浓度NH4Cl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 725-734.
[6] 麻衡, 田会云, 刘宇茜, 王月香, 何康, 崔中雨, 崔洪芝. S420海工钢在不同海洋区带环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 635-644.
[7] 胡丽华, 衣华磊, 杨维健, 孙冲, 孙建波. 水含量对超临界CO2 输送管道腐蚀的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 576-584.
[8] 徐云峰, 王少峰, 何龙, 刘冬, 黄峰, 刘静. EPS处理对QStE700TM钢氢脆敏感性影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 691-699.
[9] 周龙, 鲁骏, 丁文珊, 李昊, 陶涛, 师超, 邵亚薇, 刘光明. 不同植酸盐对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 669-678.
[10] 周兰欣, 张丽萍, 汤燕, 陈柯宇, 周剑军, 师超, 邵亚薇, 刘光明. 植酸锌的制备及其对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 396-404.
[11] 周文彬, 李梦冉, 周欣, 孙海静, 孙杰. 油溶性曼尼希碱缓蚀剂对紫铜在变压器油中的缓蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 453-461.
[12] 张金龙 付广艳 宁礼奎 刘恩泽 谭政 佟健 郑志. 不同热处理状态的镍基单晶高温合金热腐蚀行为研究[J]. 中国腐蚀与防护学报, 0, (): 0-0.
[13] 姜伯晨, 类延华, 张玉良, 李晓峰, 刘涛, 董丽华. 功能性超疏水涂层在极地抗冰领域的应用研究进展[J]. 中国腐蚀与防护学报, 2024, 44(1): 1-14.
[14] 李双, 董立谨, 郑淮北, 吴铖川, 王洪利, 凌东, 王勤英. 飞机起落架用超高强钢应力腐蚀开裂研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1178-1188.
[15] 肖檬, 王勤英, 张兴寿, 西宇辰, 白树林, 董立谨, 张进, 杨俊杰. 激光淬火对AISI 4130钢微观组织结构及腐蚀、磨损行为的影响机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.