Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (6): 1566-1572     CSTR: 32134.14.1005.4537.2024.052      DOI: 10.11902/1005.4537.2024.052
  研究报告 本期目录 | 过刊浏览 |
SCl表面吸附及其对 γ-FeM(111)(M = CrNiMnMoCuCe)腐蚀的理论研究
董楠, 秦慰蓉, 韩培德()
太原理工大学材料科学与工程学院 太原 030024
Theoretical Study in Adsorption Behavior of S and Cl on Surface and its Effect on Corrosion Performance of γ-FeM(111) (M = Cr, Ni, Mn, Mo, Cu, Ce)
DONG Nan, QIN Weirong, HAN Peide()
College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
引用本文:

董楠, 秦慰蓉, 韩培德. SCl表面吸附及其对 γ-FeM(111)(M = CrNiMnMoCuCe)腐蚀的理论研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1566-1572.
Nan DONG, Weirong QIN, Peide HAN. Theoretical Study in Adsorption Behavior of S and Cl on Surface and its Effect on Corrosion Performance of γ-FeM(111) (M = Cr, Ni, Mn, Mo, Cu, Ce)[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1566-1572.

全文: PDF(5325 KB)   HTML
摘要: 

采用第一性原理计算方法研究了S、Cl在γ-FeM(111) (M=Cr、Ni、Mn、Mo、Cu、Ce)表面的吸附及其引起的腐蚀,以及拉、压应力对体系表面结构稳定性的影响。计算结果表明:S、Cl在γ-Fe(111)表面最容易吸附于hcp位和fcc位,S和Cl吸附表面的电子功函数降低,耐蚀性能减弱。合金元素Cr、Ni、Mn、Mo、Cu、Ce与γ-Fe(111)构成的表面耐Cl腐蚀;Mo、Cu和Ce可以同步提高γ-Fe(111)表面的抗S、Cl腐蚀能力。压应力作用下,S、Cl吸附的γ-FeM(111) (M = Cr、Ni、Mn、Mo、Cu、Ce)表面的电子功函数增大,而拉应力下使得表面电子功函数减小,S、Cl吸附与拉应力共同作用将大大降低体系的耐蚀性。

关键词 γ-Fe腐蚀介质SCl合金化应力电子功函数第一性原理    
Abstract

The adsorption behavior of S and Cl on γ-FeM(111) (M = Cr, Ni, Mn, Mo, Cu, Ce) surface and its influence on the corrosion performance of the latter, as well as the effect of the applied tensile and compressive stress on the surface stability of the γ-FeM(111) were studied by first principles calculation method. The calculation results show that S and Cl are most easily adsorbed at hcp- and fcc-sites on γ-Fe(111) surface, as a result from this, the electronic work function of S and Cl adsorbed surfaces decreases, accordingly, the corrosion resistance becomes weak for the γ-FeM(111) absorbed with S and Cl. The surface of γ-FeM(111) alloyed with M = Cr, Ni, Mn, Mo, Cu, Ce is resistant to Cl corrosion. Among the alloying elements, Mo, Cu and Ce can synergistically improve the resistance to S and Cl corrosion. Under compressive stress, the electron work function of the γ-FeM(111) (M = Cr, Ni, Mn, Mo, Cu, Ce) surface adsorbed with S and Cl increases, while the electron work function decreases under tensile stress. The joint action of S, Cl and tensile stress greatly reduces the surface corrosion resistance.

Key wordsγ-Fe    corrosive media    S    Cl    alloying    stress    electronic work functions    first principles calculation
收稿日期: 2024-02-21      32134.14.1005.4537.2024.052
ZTFLH:  TG178  
基金资助:山西省自然科学基金(202203021221085)
通讯作者: 韩培德,E-mail: hanpeide@tyut.edu.cn,研究方向为新型金属材料成分优化设计与微观结构表征
Corresponding author: HAN Peide, E-mail: hanpeide@tyut.edu.cn
作者简介: 董 楠,女,1988年生,博士,讲师
图1  γ-Fe(111)表面吸附S、Cl原子不同吸附位点的模型图
AdatomInitial configurationFinal configurationAdsorption height / nmAdsorption energies / eV
Stophcp0.160-5.066
bridgehcp0.160-5.066
hcphcp0.160-5.066
fccfcc0.170-4.927
Cltophcp0.184-2.912
bridgefcc0.181-2.950
hcphcp0.184-2.912
fccfcc0.181-2.947
表1  S、Cl在γ-Fe(111)表面4种吸附位置处的吸附能及每种吸附位置优化后的结构
图2  S、Cl在γ-Fe (111)表面的电子功函数
图3  合金元素在γ-Fe (111)表面处的偏析能
图4  S、Cl在γ-FeM(111) (M = Cr、Ni、Mn、Mo、Cu、Ce)表面的吸附能
图5  S、Cl在γ-FeM(111)(M = Cr、Ni、Mn、Mo、Cu、Ce)表面的电子功函数
图6  应变对S、Cl在γ-FeM(111) (M = Cr、Ni、Mn、Mo、Cu、Ce)表面电子功函数的影响
图7  不同应变下S在合金化表面的表面电荷密度图
1 Pu E X, Zheng W J, Xiang J Z, et al. Hot working characteristic of superaustenitic stainless steel 254SMO [J]. Acta Metall. Sin.-Engl. Lett., 2014, 27: 313
2 Cui Z Y, Wang L W, Ni H T, et al. Influence of temperature on the electrochemical and passivation behavior of 2507 super duplex stainless steel in simulated desulfurized flue gas condensates [J]. Corros. Sci., 2017, 118: 31
3 Gunay H B, Ghods P, Isgor O B, et al. Characterization of atomic structure of oxide films on carbon steel in simulated concrete pore solutions using EELS [J]. Appl. Surf. Sci., 2013, 274: 195
4 Tavares S S M, Silva V G, Pardal J M, et al. Investigation of stress corrosion cracks in a UNS S32750 super duplex stainless steel [J]. Eng. Fail. Anal., 2013, 35: 88
5 Da Costa A T, De Oliveira M C L, Antunes R A. Interplay between the composition of the passive film and the corrosion resistance of citric acid‐passivated AISI 316L stainless steel [J]. Surf. Interface Anal., 2021, 53: 374
6 Wu S W, Yang T, Cao B X, et al. Multicomponent Ni-rich high-entropy alloy toughened with irregular-shaped precipitates and serrated grain boundaries [J]. Scr. Mater., 2021, 204: 114066
7 Sueptitz R, Uhlemann M, Gebert A, et al. Corrosion, passivation and breakdown of passivity of neodymium [J]. Corros. Sci., 2010, 52: 886
8 Tranchida G, Di Franco F, Santamaria M. Role of molybdenum on the electronic properties of passive films on stainless steels [J]. J. Electrochem. Soc., 2020, 167: 061506
9 Laha K, Kyono J, Shinya N. An advanced creep cavitation resistance Cu-containing 18Cr-12Ni-Nb austenitic stainless steel [J]. Scr. Mater., 2007, 56: 915
10 Kim S M, Kim J S, Kim K T, et al. Effect of Ce addition on secondary phase transformation and mechanical properties of 27Cr-7Ni hyper duplex stainless steels [J]. Mater. Sci. Eng., 2013, 573A: 27
11 Dong F, Wu J G, Huo P. Effect of rare earth element Ce on corrosion-resisting properties of austenite stainless steel 204Cu [J]. Spec. Steel, 2015, 36: 56
11 (董 方, 吴建光, 霍 普. 稀土元素Ce对204Cu奥氏体不锈钢耐腐蚀性能的影响 [J]. 特殊钢, 2015, 36: 56)
12 Zhang R Z, He J S, Xu S G, et al. The roles of Ce and Mn on solidification behaviors and mechanical properties of 7mo super austenitic stainless steel [J]. J Mater. Res. Technol., 2023, 22: 1238
13 Dou Y P, Han S K, Wang L W, et al. Characterization of the passive properties of 254SMO stainless steel in simulated desulfurized flue gas condensates by electrochemical analysis, XPS and ToF-SIMS [J]. Corros. Sci., 2020, 165: 108405
14 Zhang S C, Li H B, Jiang Z H, et al. Chloride- and sulphate-induced hot corrosion mechanism of super austenitic stainless steel S31254 under dry gas environment [J]. Corros. Sci., 2020, 163: 108295
15 Brewick P T, DeGiorgi V G, Geltmacher A B, et al. Modeling the influence of microstructure on the stress distributions of corrosion pits [J]. Corros. Sci., 2019, 158: 108111
16 Scott P M, Combrade P. General corrosion and stress corrosion cracking of alloy 600 in light water reactor primary coolants [J]. J. Nucl. Mater., 2019, 524: 340
17 Yang J, Zhang Y, Dong N, et al. Segregation behavior of alloying elements at NbC/fcc-Fe interface and effects of boron [J]. Rare Met. Mater. Eng., 2022, 51: 2056
18 Guo G Y, Wang H H. Gradient-corrected density functional calculation of elastic constants of Fe, Co and Ni in bcc, fcc and hcp structures [J]. Chin. J. Phys., 2000, 38: 949
19 Häglund J, Guillerment A F, Grimvall G, et al. Theory of bonding in transition-metal carbides and nitrides [J]. Phys. Rev., 1993, 48B: 11685
20 Lee S J, Lee Y K, Soon A. The austenite/ɛ martensite interface: A first-principles investigation of the fcc Fe(1 1 1)/hcp Fe(0 0 0 1) system [J]. Appl. Surf. Sci., 2012, 258: 9977
21 Han C, Zhang C L, Liu X L, et al. DFT study of the effects of interstitial impurities on the resistance of Cr-doped γ-Fe(111) surface dissolution corrosion [J]. J. Mol. Model., 2015, 21: 206
22 Zhao X X, Tao X M, Mi Y M, et al. The geometry structure and electronic states of chlorine on Cu(111) surface [J]. J. Atom. Mol. Phys., 2009, 26: 150
22 (赵新新, 陶向明, 宓一鸣 等. 氯原子在Cu(111)表面的吸附结构和电子态 [J]. 原子与分子物理学报, 2009, 26: 150)
23 Błoński P, Kiejna A, Hafner J. Theoretical study of oxygen adsorption at the Fe(1 1 0) and (1 0 0) surfaces [J]. Surf. Sci., 2005, 590: 88
24 Niu Y N, Dong N, Liu S, et al. Effects of different alloying elements M (M = Fe, Ni, Mn, Si, Mo, Cu, Y) on Cr2O3 with Cl: a first-principles study [J]. J. Iron Steel Res. Int., 2021, 28: 613
25 Li D Y, Li W. Electron work function: a parameter sensitive to the adhesion behavior of crystallographic surfaces [J]. Appl. Phys. Lett., 2001, 79: 4337
26 Kong M, Wu J J, Han T R, et al. Corrosion mechanism of T1 phase in Al-Cu-Li alloy: First-principles calculations [J]. Acta Phys. Sin., 2020, 69: 027101
26 (孔 敏, 吴静静, 韩天茹 等. 第一性原理研究Al-Cu-Li合金中T1相的腐蚀机理 [J]. 物理学报, 2020, 69: 027101)
27 Zhang Y, Ma J Y, Li H B, et al. Improved corrosion resistance of super austenite stainless steel by B-induced nucleation of Laves phase [J]. Corros. Sci., 2023, 213: 110974
28 Kiejna A, Wachowicz E. Segregation of Cr impurities at bcc iron surfaces: First-principles calculations [J]. Phys. Rev., 2008, 78B: 113403
29 Li W, Cai M, Wang Y, et al. Influences of tensile strain and strain rate on the electron work function of metals and alloys [J]. Scr. Mater., 2006, 54: 921
[1] 吴亮亮, 殷若展, 陈朝旭, 梁君岳, 孙擎擎, 伍廉奎, 曹发和. Ti45Al8.5Nb合金表面Zr-SiO2 复合涂层的制备及其抗高温氧化性能研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1423-1434.
[2] 庞洁, 刘相局, 刘娜珍, 侯保荣. T2铜合金和Q235钢在模拟北山地下水环境中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1435-1442.
[3] 占阜元, 刘宣义, 黄世福, 刘帅岐, 徐媛媛, 潘喜桂, 何华林, 刘光明. SA210C钢在涂覆不同质量比混合盐膜下的高温腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(6): 1656-1662.
[4] 张颛利, 戴海龙, 张喆, 石守稳, 陈旭. HF溶液中316L应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1633-1640.
[5] 苏志诚, 张弦, 程焱, 刘静, 吴开明. 同成分的超细贝氏体钢和Q&P钢在海水中应力腐蚀开裂行为对比研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1495-1506.
[6] 梁梓豪, 应宗权, 刘梅梅, 杨帅. 基于Stacking集成模型融合的钢筋混凝土锈胀开裂预测方法[J]. 中国腐蚀与防护学报, 2024, 44(6): 1601-1609.
[7] 董征, 毛永祺, 孟洲, 陈向翔, 付传清, 陆晨涛. 应力作用下钢筋在模拟混凝土孔隙液中的钝化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1547-1556.
[8] 张雅妮, 王思敏, 樊冰. TC4钛合金在O2 + CO2 气氛的高温高压模拟水沉积液中表面形成的钝化膜研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1518-1528.
[9] 王文泉, 崔宇, 薛蕴鹏, 刘莉, 王福会. 潮湿空气中应力耦合固态NaCl作用下GH4169合金的中温腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1399-1411.
[10] 马晋遥, 董楠, 郭振森, 韩培德. B、Ce微合金化对S31254超级奥氏体不锈钢析出相及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1610-1616.
[11] 赵骞, 张洁, 毛锐锐, 缪春辉, 卞亚飞, 滕越, 汤文明. Q235钢结构件表面热镀锌层的应力腐蚀及其机理[J]. 中国腐蚀与防护学报, 2024, 44(5): 1305-1315.
[12] 潘宗宇, 刘静, 姜志忠, 罗林, 贾寒冰, 刘欣雨. Fe34Cr30Mo15Ni15Nb3Al3 高熵合金在500℃下氧含量为10-6%的液态铅铋合金中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1353-1360.
[13] 杨涛, 许磊, 王建春, 张明程, 姚彦博, 高国刚, 许文忠, 历长云. 油套管CO2 腐蚀和防护研究进展[J]. 中国腐蚀与防护学报, 2024, 44(5): 1134-1144.
[14] 韩宇龙, 李健, 郭丽雅, 杨边疆, 陆恒昌, 韦习成, 董瀚. 螺纹钢中MnS夹杂物诱发的局部腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(5): 1255-1262.
[15] 史先飞, 陈晓华, 满成. HRB400钢在模拟混凝土孔隙液中的自然钝化行为及耐蚀性能的研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1213-1222.