|
|
鼠李糖脂与2,2-二溴-3-次氮基丙酰胺协同抑制X80管线钢的微生物腐蚀 |
王娅利1,2, 管方1,3,4( ), 段继周1( ), 张丽娜1, 杨政险3, 侯保荣1 |
1.中国科学院海洋研究所 海洋环境腐蚀与生物污损重点实验室 青岛 266071 2.中国科学院大学 北京 100049 3.福州大学土木工程学院 福州 350108 4.广西科学院 广西海洋科学院广西近海海洋环境科学重点实验室 南宁 530007 |
|
Synergistic Inhibition of Rhamnolipid and 2, 2-dibromo-3-hypoazopropionamide on Microbiologically Influenced Corrosion of X80 Pipeline Steel |
WANG Yali1,2, GUAN Fang1,3,4( ), DUAN Jizhou1( ), ZHANG Lina1, YANG Zhengxian3, HOU Baorong1 |
1. Key laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China 2. University of Chinese Academy of Science, Beijing 100049, China 3. College of Civil Engineering, Fuzhou University, Fuzhou 350108, China 4. Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning 530007, China |
引用本文:
王娅利, 管方, 段继周, 张丽娜, 杨政险, 侯保荣. 鼠李糖脂与2,2-二溴-3-次氮基丙酰胺协同抑制X80管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2024, 44(6): 1412-1422.
Yali WANG,
Fang GUAN,
Jizhou DUAN,
Lina ZHANG,
Zhengxian YANG,
Baorong HOU.
Synergistic Inhibition of Rhamnolipid and 2, 2-dibromo-3-hypoazopropionamide on Microbiologically Influenced Corrosion of X80 Pipeline Steel[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1412-1422.
1 |
Skovhus T L, Eckert R B, Rodrigues E. Management and control of microbiologically influenced corrosion (MIC) in the oil and gas industry—Overview and a North Sea case study [J]. J. Biotechnol., 2017, 256: 31
doi: S0168-1656(17)31515-8
pmid: 28687514
|
2 |
Al-Nabulsi K M, Al-Abbas F M, Rizk T Y, et al. Microbiologically assisted stress corrosion cracking in the presence of nitrate reducing bacteria [J]. Eng. Failure Anal., 2015, 58: 165
|
3 |
Fu A Q, Yuan J T, Li X P, et al. Gathering pipeline corrosion of oil and gas field and its anti-corrosion technologies [J]. Pet. Tubular Goods Instrum., 2021, 7(6): 14
|
3 |
(付安庆, 袁军涛, 李轩鹏 等. 油气田地面管道内腐蚀现状及防腐技术研究进展 [J]. 石油管材与仪器, 2021, 7(6): 14)
|
4 |
Fan R X, Yan H Y, Qiu Z J, et al. Internal corrosion risk and solution of offshore oilfield pipeline [J]. Total Corros. Control, 2019, 33(12): 102
|
4 |
(樊荣兴, 闫化云, 仇朝军 等. 海洋石油海底管道面临的内腐蚀风险及对策 [J]. 全面腐蚀控制, 2019, 33(12): 102)
|
5 |
Liu H W, Xu D K, Yang K, et al. Corrosion of antibacterial Cu-bearing 316L stainless steels in the presence of sulfate reducing bacteria [J]. Corros. Sci., 2018, 132: 46
|
6 |
Jia R, Tan J L, Jin P, et al. Effects of biogenic H2S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio vulgaris biofilm [J]. Corros. Sci., 2018, 130: 1
|
7 |
Starosvetsky J, Starosvetsky D, Pokroy B, et al. Electrochemical behaviour of stainless steels in media containing iron-oxidizing bacteria (IOB) by corrosion process modeling [J]. Corros. Sci., 2008, 50: 540
|
8 |
Liu F L, Zhang J, Sun C X, et al. The corrosion of two aluminium sacrificial anode alloys in SRB-containing sea mud [J]. Corros. Sci., 2014, 83: 375
|
9 |
Jacobson G A. Corrosion at Prudhoe Bay - A lesson on the line [J]. Mater. Perform., 2007, 46: 26
|
10 |
Wen X. Present situation and development trend of inhibiting microbial corrosion in oil field [J]. Total Corros. Control, 2022, 36(3): 83
|
10 |
(温 雪. 抑制油田微生物腐蚀的现状与发展趋势 [J]. 全面腐蚀控制, 2022, 36(3): 83)
|
11 |
Wang Z Q, Li Y T, Ren J, et al. Investigating the effects of environment, corrosion degree, and distribution of corrosive microbial communities on service-life of refined oil pipelines [J]. Environ. Sci. Pollut. Res. Int., 2022, 29: 52204
|
12 |
Dong X C, Guan F, Xu L T, et al. Progress on the corrosion mechanism of sulfate-reducing bacteria in marine environment on metal materials [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 1
|
12 |
(董续成, 管 方, 徐利婷 等. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 1)
doi: 10.11902/1005.4537.2019.241
|
13 |
Enning D, Venzlaff H, Garrelfs J, et al. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust [J]. Environ. Microbiol., 2012, 14: 1772
doi: 10.1111/j.1462-2920.2012.02778.x
pmid: 22616633
|
14 |
Wu T Q, Yang P, Zhang M D, et al. Microbiologically induced corrosion of X80 pipeline steel in an acid soil solution: (Ⅱ) corrosion morphology and corrosion product analysis [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 353
|
14 |
(吴堂清, 杨 圃, 张明德 等. 酸性土壤浸出液中X80钢微生物腐蚀研究: (Ⅱ)腐蚀形貌和产物分析 [J]. 中国腐蚀与防护学报, 2014, 34: 353)
doi: 10.11902/1005.4537.2014.045
|
15 |
Hou B R, Yan J, Wang Y L, et al. Status and trend of microbiologically influenced corrosion and control technologies of pipelines in oil and gas field exploitation [J]. Chem. Eng. Oil Gas, 2022, 51(5): 71
|
15 |
(侯保荣, 闫 静, 王娅利 等. 油气田开采中管道微生物腐蚀防护技术研究现状与趋势 [J]. 石油与天然气化工, 2022, 51(5): 71)
|
16 |
Li Z, Yuan X Y, Sun M Y, et al. Rhamnolipid as an eco-friendly corrosion inhibitor for microbiologically influenced corrosion [J]. Corros. Sci., 2022, 204: 110390
|
17 |
Struchtemeyer C G, Morrison M D, Elshahed M S. A critical assessment of the efficacy of biocides used during the hydraulic fracturing process in shale natural gas wells [J]. Int. Biodeterior. Biodegrad., 2012, 71: 15
|
18 |
Xue Y, Voordouw G. Control of microbial sulfide production with biocides and nitrate in oil reservoir simulating bioreactors [J]. Front. Microbiol., 2015, 6: 1387
doi: 10.3389/fmicb.2015.01387
pmid: 26696994
|
19 |
Wang D, Ramadan M, Kumseranee S, et al. Mitigating microbiologically influenced corrosion of an oilfield biofilm consortium on carbon steel in enriched hydrotest fluid using 2,2-dibromo-3-nitrilopropionamide (DBNPA) enhanced by a 14-mer peptide [J]. J. Mater. Sci. Technol., 2020, 57: 146
doi: 10.1016/j.jmst.2020.02.087
|
20 |
Nitschke M, Costa S G V A O, Contiero J. Rhamnolipid surfactants: An update on the general aspects of these remarkable biomolecules [J]. Biotechnol. Prog., 2005, 21: 1593
|
21 |
Zhao F, Dong M, Qu W H. Advances in optimization strategies for microbial high production of rhamnolipids [J]. Microbiol. China, 2022, 49: 373
|
21 |
(赵 峰, 董 梅, 曲文豪. 微生物合成鼠李糖脂的高产优化策略研究进展 [J]. 微生物学通报, 2022, 49: 373)
|
22 |
Unsal T, Wang D, Kumseranee S, et al. D-Tyrosine enhancement of microbiocide mitigation of carbon steel corrosion by a sulfate reducing bacterium biofilm [J]. World J. Microbiol. Biotechnol., 2021, 37: 103
|
23 |
Du J, Hao J A, Zhang X Q, et al. Research progress in biosynthesis of Rhamnolipid biosurfactant [J]. Chem. Bioeng., 2015, 32(4): 5
|
23 |
(杜 瑾, 郝建安, 张晓青 等. 微生物合成鼠李糖脂生物表面活性剂的研究进展 [J]. 化学与生物工程, 2015, 32(4): 5)
|
24 |
Dong X C, Zhai X F, Zhang Y M, et al. Steel rust layers immersed in the South China Sea with a highly corrosive Desulfovibrio strain [J]. npj Mater. Degrad., 2022, 6: 91
|
25 |
Yu L, Duan J Z, Du X Q, et al. Accelerated anaerobic corrosion of electroactive sulfate-reducing bacteria by electrochemical impedance spectroscopy and chronoamperometry [J]. Electrochem. Commun., 2013, 26: 101
|
26 |
Guan F, Duan J Z, Zhai X F, et al. Interaction between sulfate-reducing bacteria and aluminum alloys—Corrosion mechanisms of 5052 and Al-Zn-In-Cd aluminum alloys [J]. J. Mater. Sci. Technol., 2020, 36: 55
doi: 10.1016/j.jmst.2019.07.009
|
27 |
Jia R, Wang D, Jin P, et al. Effects of ferrous ion concentration on microbiologically influenced corrosion of carbon steel by sulfate reducing bacterium Desulfovibrio vulgaris [J]. Corros. Sci., 2019, 153: 127
doi: 10.1016/j.corsci.2019.03.038
|
28 |
Zhao R L, Wang B, Li D B, et al. Effect of sulfate-reducing bacteria from salt scale of water flooding pipeline on corrosion behavior of X80 steel [J]. Eng. Failure Anal., 2022, 142: 106788
|
29 |
Dong X C, Zhai X F, Yang J, et al. Two metabolic stages of SRB strain Desulfovibrio bizertensis affecting corrosion mechanism of carbon steel Q235 [J]. Corros. Commun., 2023, 10: 56
|
30 |
ASTM. Standard practice for preparing, cleaning, and evaluating corrosion test specimens [S]. ASTM, 2003
|
31 |
Liu H W, Gu T Y, Lv Y L, et al. Corrosion inhibition and anti-bacterial efficacy of benzalkonium chloride in artificial CO2-saturated oilfield produced water [J]. Corros. Sci., 2017, 117: 24
|
32 |
Dou W W, Xu D K, Gu T Y. Biocorrosion caused by microbial biofilms is ubiquitous around us [J]. Microb. Biotechnol., 2021, 14: 803
doi: 10.1111/1751-7915.13690
pmid: 33320430
|
33 |
Guan F, Zhai X F, Duan J Z, et al. Influence of sulfate-reducing bacteria on the corrosion behavior of 5052 aluminum alloy [J]. Surf. Coat. Technol., 2017, 316: 171
|
34 |
Genchev G, Erbe A. Raman spectroscopy of mackinawite FeS in anodic iron sulfide corrosion products [J]. J. Electrochem. Soc., 2016, 163: C333
|
35 |
Mullet M, Guillemin Y, Ruby C. Oxidation and deprotonation of synthetic FeII-FeIII (oxy)hydroxycarbonate Green Rust: an X-ray photoelectron study [J]. J. Solid State Chem., 2008, 181: 81
|
36 |
Sheng X, Ting Y P, Pehkonen S O. The influence of ionic strength, nutrients and pH on bacterial adhesion to metals [J]. J. Colloid Interface Sci., 2008, 321: 256
|
37 |
Dong X C. Study on corrosion mechanism of SRB in sea rust layer on Fe() and application of metabolic FeS [D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2023
|
37 |
(董续成. 实海锈层SRB对Fe()腐蚀机理及其代谢FeS应用研究 [D]. 青岛: 中国科学院海洋研究所, 2023)
|
38 |
Liu H F, Yang H X, Huang L, et al. An environmentally friendly bromine-based bactericide and its antibacterial and anticorrosion performance [J]. Mater. Prot., 2008, 41(7): 18
|
38 |
(刘宏芳, 杨华啸, 黄 玲 等. 环境友好型溴类杀菌剂的合成及其抗菌防腐蚀性能研究 [J]. 材料保护, 2008, 41(7): 18)
|
39 |
Barros A C, Melo L F, Pereira A. A Multi-purpose approach to the mechanisms of action of two biocides (benzalkonium chloride and dibromonitrilopropionamide): discussion of Pseudomonas fluorescens’Viability and Death [J]. Front. Microbiol., 2022, 13: 842414
|
40 |
ІPokhmurs’kyi V, Karpenko О V, Zin’ І М, et al. Inhibiting action of biogenic surfactants in corrosive media [J]. Mater. Sci., 2014, 50: 448
|
41 |
Wood T L, Gong T, Zhu L, et al. Rhamnolipids from Pseudomonas aeruginosa disperse the biofilms of sulfate-reducing bacteria [J]. npj Biofilms Microbiomes, 2018, 4: 22
|
42 |
Feng Y, Xiu J L, Yi L N, et al. Optimization of fermentation conditions and evaluation of oil displacement potential of an oil producing functional strain [J]. Appl. Chem. Ind., 2023, 52: 795
|
42 |
(冯 艳, 修建龙, 伊丽娜 等. 鼠李糖脂产量的提高及采油应用研究 [J]. 应用化工, 2023, 52: 795)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|