Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (6): 1412-1422     CSTR: 32134.14.1005.4537.2024.051      DOI: 10.11902/1005.4537.2024.051
  研究报告 本期目录 | 过刊浏览 |
鼠李糖脂与2,2-二溴-3-次氮基丙酰胺协同抑制X80管线钢的微生物腐蚀
王娅利1,2, 管方1,3,4(), 段继周1(), 张丽娜1, 杨政险3, 侯保荣1
1.中国科学院海洋研究所 海洋环境腐蚀与生物污损重点实验室 青岛 266071
2.中国科学院大学 北京 100049
3.福州大学土木工程学院 福州 350108
4.广西科学院 广西海洋科学院广西近海海洋环境科学重点实验室 南宁 530007
Synergistic Inhibition of Rhamnolipid and 2, 2-dibromo-3-hypoazopropionamide on Microbiologically Influenced Corrosion of X80 Pipeline Steel
WANG Yali1,2, GUAN Fang1,3,4(), DUAN Jizhou1(), ZHANG Lina1, YANG Zhengxian3, HOU Baorong1
1. Key laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
2. University of Chinese Academy of Science, Beijing 100049, China
3. College of Civil Engineering, Fuzhou University, Fuzhou 350108, China
4. Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning 530007, China
引用本文:

王娅利, 管方, 段继周, 张丽娜, 杨政险, 侯保荣. 鼠李糖脂与2,2-二溴-3-次氮基丙酰胺协同抑制X80管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2024, 44(6): 1412-1422.
Yali WANG, Fang GUAN, Jizhou DUAN, Lina ZHANG, Zhengxian YANG, Baorong HOU. Synergistic Inhibition of Rhamnolipid and 2, 2-dibromo-3-hypoazopropionamide on Microbiologically Influenced Corrosion of X80 Pipeline Steel[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1412-1422.

全文: PDF(10954 KB)   HTML
摘要: 

研究了2,2-二溴-3-次氮基丙酰胺(DBNPA)与鼠李糖脂(RL)对X80管线钢在硫酸盐还原菌Desulfovibrio bizertensis SY-1中的腐蚀行为影响。结果表明,Desulfovibrio bizertensis SY-1存在时,X80管线钢的腐蚀失重和点蚀深度明显增加,且表面检测出FeS腐蚀产物。DBNPA的添加,抑制了浮游及固着SRB的生长,减缓了X80管线钢的腐蚀。150 mg/L DBNPA与500 mg/L RL进行复配时,X80管线钢的腐蚀速率与SRB体系相比降低了77.8% (p = 0.009),与单独使用300 mg/L DBNPA相比降低了50%。另外,150 mg/L DBNPA与500 mg/L RL复配时,X80管线钢腐蚀浸泡15 d后的腐蚀电流密度与SRB体系相比降低了84.7%,与单独使用300 mg/L DBNPA的SRB体系相比降低了20.5%,可显著抑制X80管线钢的微生物腐蚀。

关键词 硫酸盐还原菌微生物腐蚀22-二溴-3-次氮基丙酰胺鼠李糖脂X80管线钢    
Abstract

The synergistic effect of 2,2-dibromo-3-hypoazopropionamide (DBNPA) and rhamnolipid (RL) on the corrosion behavior of X80 pipeline steel in solutions containing sulfate reducing bacteria (SRB) Desulfovibrio bizertensis SY-1 was investigated. The results showed that compared with a sterile solution, the mass loss and pitting depth of X80 pipeline steel significantly increased in the presence of Desulfovibriobizertensis SY-1, while corrosion product FeS was detected on steel surface. However, the addition of DBNPA effectively inhibited the growth of planktonic and sessile bacterial cells, thereby retarding the corrosion process on X80 pipeline steel. Notably, when 150 mg/L DBNPA and 500 mg/L RL were co-added in the solution, the corrosion rate of X80 pipeline steel decreased by 77.8% compared to that in the SRB (p = 0.009) containing solution, whilst, by 50% compared to that in the SRB containing solution with addition of 300 mg/L DBNPA alone. Furthermore, this combination also led to an approximately 84.7% reduction in corrosion current density even after 15 days' immersion compared to that in the SRB containing solution, and about 20.5% reduction compared to that in the SRB containing solution with addition of 300 mg/L DBNPA alone. Therefore, these findings found that the cooperative addition of 150 mg/L DBNPA and 500 mg/L RL can effectively inhibit the corrosion of X80 pipeline steel induced by Desulfovibrio bizertensis SY-1. The results may provide references for selecting and utilizing biocides.

Key wordssulfate reducing bacteria    microbiologically influenced corrosion    DBNPA    RL    X80 pipeline steel
收稿日期: 2024-02-17      32134.14.1005.4537.2024.051
ZTFLH:  TG174  
基金资助:福建省海洋经济发展专项(FJHJF-L-2022-19);广西自然科学基金(2023GXNSFBA026252);山东省自然科学基金面上基金(ZR2023MD024);国家自然科学基金(42476209)
通讯作者: 管 方,E-mail:guanfang@qdio.ac.cn,研究方向为微生物腐蚀机理;
段继周,E-mail:duanjz@qdio.ac.cn,研究方向为海洋腐蚀机制与防护技术
DUAN Jizhou, E-mail: duanjz@qdio.ac.cn
Corresponding author: GUAN Fang, E-mail: guanfang@qdio.ac.cn
作者简介: 王娅利,女,1998年生,硕士生
图1  X80试片在不同溶液体系中浸泡15 d后的pH、OD600、浮游细菌及固着细菌计数
图2  X80试片在不同溶液体系中浸泡15 d后的腐蚀形貌
图3  X80试片在不同溶液体系中浸泡15 d的腐蚀速率
图4  X80试片在不同溶液体系中浸泡15 d后的最大腐蚀坑深度
图5  X80试片在不同溶液体系中浸泡15 d后表面XRD图谱
图6  X80试片在不同溶液体系中浸泡15 d后腐蚀产物的XPS图谱
ConditionsC 1sFe 2pO 1sN 1sS 2p
Sterile42.788.4046.241.361.22
Sterile + 500 mg/L RL37.8213.1246.621.391.05
SRB54.323.9434.185.691.87
SRB + 500 mg/L RL54.083.6034.933.863.53
SRB +150 mg/L DBNPA54.295.3332.866.772.75
SRB + 150 mg/L DBNPA+500 mg/L RL52.386.4432.356.132.71
SRB + 300 mg/L DBNPA46.867.1736.476.852.64
表1  依据XPS拟合得到的浸泡后X80试片表面腐蚀产物各元素含量 (atomic fraction / %)
图7  X80试片在不同溶液体系中浸泡15 d后的开路电位
图8  X80试片在各种溶液体系中浸泡15 d后的动电位极化曲线
ParameterEcorr / mV vs. SCEIcorr / µA·cm-2βa / mV·dec-1βc / mV·dec-1
Sterile-7212.1158.3-126.2
Sterile + 500 mg/L RL-6733.3277.3-135.5
SRB-62117.6350.6-105.7
SRB + 500 mg/L RL-6698.9208.4-108.7
SRB + 150 mg/L DBNPA-6556.8190.0-146.6
SRB + 150 mg/L DBNPA + 500 mg/L RL-6882.7194.4-148.6
SRB + 300 mg/L DBNPA-6636.3311.4-131.4
表2  X80试片在不同溶液体系中的动电位极化曲线的拟合参数
1 Skovhus T L, Eckert R B, Rodrigues E. Management and control of microbiologically influenced corrosion (MIC) in the oil and gas industry—Overview and a North Sea case study [J]. J. Biotechnol., 2017, 256: 31
doi: S0168-1656(17)31515-8 pmid: 28687514
2 Al-Nabulsi K M, Al-Abbas F M, Rizk T Y, et al. Microbiologically assisted stress corrosion cracking in the presence of nitrate reducing bacteria [J]. Eng. Failure Anal., 2015, 58: 165
3 Fu A Q, Yuan J T, Li X P, et al. Gathering pipeline corrosion of oil and gas field and its anti-corrosion technologies [J]. Pet. Tubular Goods Instrum., 2021, 7(6): 14
3 (付安庆, 袁军涛, 李轩鹏 等. 油气田地面管道内腐蚀现状及防腐技术研究进展 [J]. 石油管材与仪器, 2021, 7(6): 14)
4 Fan R X, Yan H Y, Qiu Z J, et al. Internal corrosion risk and solution of offshore oilfield pipeline [J]. Total Corros. Control, 2019, 33(12): 102
4 (樊荣兴, 闫化云, 仇朝军 等. 海洋石油海底管道面临的内腐蚀风险及对策 [J]. 全面腐蚀控制, 2019, 33(12): 102)
5 Liu H W, Xu D K, Yang K, et al. Corrosion of antibacterial Cu-bearing 316L stainless steels in the presence of sulfate reducing bacteria [J]. Corros. Sci., 2018, 132: 46
6 Jia R, Tan J L, Jin P, et al. Effects of biogenic H2S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio vulgaris biofilm [J]. Corros. Sci., 2018, 130: 1
7 Starosvetsky J, Starosvetsky D, Pokroy B, et al. Electrochemical behaviour of stainless steels in media containing iron-oxidizing bacteria (IOB) by corrosion process modeling [J]. Corros. Sci., 2008, 50: 540
8 Liu F L, Zhang J, Sun C X, et al. The corrosion of two aluminium sacrificial anode alloys in SRB-containing sea mud [J]. Corros. Sci., 2014, 83: 375
9 Jacobson G A. Corrosion at Prudhoe Bay - A lesson on the line [J]. Mater. Perform., 2007, 46: 26
10 Wen X. Present situation and development trend of inhibiting microbial corrosion in oil field [J]. Total Corros. Control, 2022, 36(3): 83
10 (温 雪. 抑制油田微生物腐蚀的现状与发展趋势 [J]. 全面腐蚀控制, 2022, 36(3): 83)
11 Wang Z Q, Li Y T, Ren J, et al. Investigating the effects of environment, corrosion degree, and distribution of corrosive microbial communities on service-life of refined oil pipelines [J]. Environ. Sci. Pollut. Res. Int., 2022, 29: 52204
12 Dong X C, Guan F, Xu L T, et al. Progress on the corrosion mechanism of sulfate-reducing bacteria in marine environment on metal materials [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 1
12 (董续成, 管 方, 徐利婷 等. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 1)
doi: 10.11902/1005.4537.2019.241
13 Enning D, Venzlaff H, Garrelfs J, et al. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust [J]. Environ. Microbiol., 2012, 14: 1772
doi: 10.1111/j.1462-2920.2012.02778.x pmid: 22616633
14 Wu T Q, Yang P, Zhang M D, et al. Microbiologically induced corrosion of X80 pipeline steel in an acid soil solution: (Ⅱ) corrosion morphology and corrosion product analysis [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 353
14 (吴堂清, 杨 圃, 张明德 等. 酸性土壤浸出液中X80钢微生物腐蚀研究: (Ⅱ)腐蚀形貌和产物分析 [J]. 中国腐蚀与防护学报, 2014, 34: 353)
doi: 10.11902/1005.4537.2014.045
15 Hou B R, Yan J, Wang Y L, et al. Status and trend of microbiologically influenced corrosion and control technologies of pipelines in oil and gas field exploitation [J]. Chem. Eng. Oil Gas, 2022, 51(5): 71
15 (侯保荣, 闫 静, 王娅利 等. 油气田开采中管道微生物腐蚀防护技术研究现状与趋势 [J]. 石油与天然气化工, 2022, 51(5): 71)
16 Li Z, Yuan X Y, Sun M Y, et al. Rhamnolipid as an eco-friendly corrosion inhibitor for microbiologically influenced corrosion [J]. Corros. Sci., 2022, 204: 110390
17 Struchtemeyer C G, Morrison M D, Elshahed M S. A critical assessment of the efficacy of biocides used during the hydraulic fracturing process in shale natural gas wells [J]. Int. Biodeterior. Biodegrad., 2012, 71: 15
18 Xue Y, Voordouw G. Control of microbial sulfide production with biocides and nitrate in oil reservoir simulating bioreactors [J]. Front. Microbiol., 2015, 6: 1387
doi: 10.3389/fmicb.2015.01387 pmid: 26696994
19 Wang D, Ramadan M, Kumseranee S, et al. Mitigating microbiologically influenced corrosion of an oilfield biofilm consortium on carbon steel in enriched hydrotest fluid using 2,2-dibromo-3-nitrilopropionamide (DBNPA) enhanced by a 14-mer peptide [J]. J. Mater. Sci. Technol., 2020, 57: 146
doi: 10.1016/j.jmst.2020.02.087
20 Nitschke M, Costa S G V A O, Contiero J. Rhamnolipid surfactants: An update on the general aspects of these remarkable biomolecules [J]. Biotechnol. Prog., 2005, 21: 1593
21 Zhao F, Dong M, Qu W H. Advances in optimization strategies for microbial high production of rhamnolipids [J]. Microbiol. China, 2022, 49: 373
21 (赵 峰, 董 梅, 曲文豪. 微生物合成鼠李糖脂的高产优化策略研究进展 [J]. 微生物学通报, 2022, 49: 373)
22 Unsal T, Wang D, Kumseranee S, et al. D-Tyrosine enhancement of microbiocide mitigation of carbon steel corrosion by a sulfate reducing bacterium biofilm [J]. World J. Microbiol. Biotechnol., 2021, 37: 103
23 Du J, Hao J A, Zhang X Q, et al. Research progress in biosynthesis of Rhamnolipid biosurfactant [J]. Chem. Bioeng., 2015, 32(4): 5
23 (杜 瑾, 郝建安, 张晓青 等. 微生物合成鼠李糖脂生物表面活性剂的研究进展 [J]. 化学与生物工程, 2015, 32(4): 5)
24 Dong X C, Zhai X F, Zhang Y M, et al. Steel rust layers immersed in the South China Sea with a highly corrosive Desulfovibrio strain [J]. npj Mater. Degrad., 2022, 6: 91
25 Yu L, Duan J Z, Du X Q, et al. Accelerated anaerobic corrosion of electroactive sulfate-reducing bacteria by electrochemical impedance spectroscopy and chronoamperometry [J]. Electrochem. Commun., 2013, 26: 101
26 Guan F, Duan J Z, Zhai X F, et al. Interaction between sulfate-reducing bacteria and aluminum alloys—Corrosion mechanisms of 5052 and Al-Zn-In-Cd aluminum alloys [J]. J. Mater. Sci. Technol., 2020, 36: 55
doi: 10.1016/j.jmst.2019.07.009
27 Jia R, Wang D, Jin P, et al. Effects of ferrous ion concentration on microbiologically influenced corrosion of carbon steel by sulfate reducing bacterium Desulfovibrio vulgaris [J]. Corros. Sci., 2019, 153: 127
doi: 10.1016/j.corsci.2019.03.038
28 Zhao R L, Wang B, Li D B, et al. Effect of sulfate-reducing bacteria from salt scale of water flooding pipeline on corrosion behavior of X80 steel [J]. Eng. Failure Anal., 2022, 142: 106788
29 Dong X C, Zhai X F, Yang J, et al. Two metabolic stages of SRB strain Desulfovibrio bizertensis affecting corrosion mechanism of carbon steel Q235 [J]. Corros. Commun., 2023, 10: 56
30 ASTM. Standard practice for preparing, cleaning, and evaluating corrosion test specimens [S]. ASTM, 2003
31 Liu H W, Gu T Y, Lv Y L, et al. Corrosion inhibition and anti-bacterial efficacy of benzalkonium chloride in artificial CO2-saturated oilfield produced water [J]. Corros. Sci., 2017, 117: 24
32 Dou W W, Xu D K, Gu T Y. Biocorrosion caused by microbial biofilms is ubiquitous around us [J]. Microb. Biotechnol., 2021, 14: 803
doi: 10.1111/1751-7915.13690 pmid: 33320430
33 Guan F, Zhai X F, Duan J Z, et al. Influence of sulfate-reducing bacteria on the corrosion behavior of 5052 aluminum alloy [J]. Surf. Coat. Technol., 2017, 316: 171
34 Genchev G, Erbe A. Raman spectroscopy of mackinawite FeS in anodic iron sulfide corrosion products [J]. J. Electrochem. Soc., 2016, 163: C333
35 Mullet M, Guillemin Y, Ruby C. Oxidation and deprotonation of synthetic FeII-FeIII (oxy)hydroxycarbonate Green Rust: an X-ray photoelectron study [J]. J. Solid State Chem., 2008, 181: 81
36 Sheng X, Ting Y P, Pehkonen S O. The influence of ionic strength, nutrients and pH on bacterial adhesion to metals [J]. J. Colloid Interface Sci., 2008, 321: 256
37 Dong X C. Study on corrosion mechanism of SRB in sea rust layer on Fe() and application of metabolic FeS [D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2023
37 (董续成. 实海锈层SRB对Fe()腐蚀机理及其代谢FeS应用研究 [D]. 青岛: 中国科学院海洋研究所, 2023)
38 Liu H F, Yang H X, Huang L, et al. An environmentally friendly bromine-based bactericide and its antibacterial and anticorrosion performance [J]. Mater. Prot., 2008, 41(7): 18
38 (刘宏芳, 杨华啸, 黄 玲 等. 环境友好型溴类杀菌剂的合成及其抗菌防腐蚀性能研究 [J]. 材料保护, 2008, 41(7): 18)
39 Barros A C, Melo L F, Pereira A. A Multi-purpose approach to the mechanisms of action of two biocides (benzalkonium chloride and dibromonitrilopropionamide): discussion of Pseudomonas fluorescens’Viability and Death [J]. Front. Microbiol., 2022, 13: 842414
40 ІPokhmurs’kyi V, Karpenko О V, Zin’ І М, et al. Inhibiting action of biogenic surfactants in corrosive media [J]. Mater. Sci., 2014, 50: 448
41 Wood T L, Gong T, Zhu L, et al. Rhamnolipids from Pseudomonas aeruginosa disperse the biofilms of sulfate-reducing bacteria [J]. npj Biofilms Microbiomes, 2018, 4: 22
42 Feng Y, Xiu J L, Yi L N, et al. Optimization of fermentation conditions and evaluation of oil displacement potential of an oil producing functional strain [J]. Appl. Chem. Ind., 2023, 52: 795
42 (冯 艳, 修建龙, 伊丽娜 等. 鼠李糖脂产量的提高及采油应用研究 [J]. 应用化工, 2023, 52: 795)
[1] 占阜元, 刘宣义, 黄世福, 刘帅岐, 徐媛媛, 潘喜桂, 何华林, 刘光明. SA210C钢在涂覆不同质量比混合盐膜下的高温腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(6): 1656-1662.
[2] 张雅妮, 王思敏, 樊冰. TC4钛合金在O2 + CO2 气氛的高温高压模拟水沉积液中表面形成的钝化膜研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1518-1528.
[3] 马晋遥, 董楠, 郭振森, 韩培德. B、Ce微合金化对S31254超级奥氏体不锈钢析出相及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1610-1616.
[4] 吴亮亮, 殷若展, 陈朝旭, 梁君岳, 孙擎擎, 伍廉奎, 曹发和. Ti45Al8.5Nb合金表面Zr-SiO2 复合涂层的制备及其抗高温氧化性能研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1423-1434.
[5] 庞洁, 刘相局, 刘娜珍, 侯保荣. T2铜合金和Q235钢在模拟北山地下水环境中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1435-1442.
[6] 赵骞, 张洁, 毛锐锐, 缪春辉, 卞亚飞, 滕越, 汤文明. Q235钢结构件表面热镀锌层的应力腐蚀及其机理[J]. 中国腐蚀与防护学报, 2024, 44(5): 1305-1315.
[7] 杨涛, 许磊, 王建春, 张明程, 姚彦博, 高国刚, 许文忠, 历长云. 油套管CO2 腐蚀和防护研究进展[J]. 中国腐蚀与防护学报, 2024, 44(5): 1134-1144.
[8] 杨成, 杨广明, 王建军, 苗学良, 张译, 孙宝壮, 刘智勇. 温度对核电站用42CrMoE低合金钢在硼酸模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(5): 1345-1352.
[9] 刘广胜, 王卫军, 周佩, 谭金颢, 丁宏鑫, 张伟, 向勇. 含杂CO2 封存条件下13CrN80套管钢腐蚀规律研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1200-1212.
[10] 吕晓明, 王震宇, 韩恩厚. 纳米改性环氧隔热涂层的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1234-1242.
[11] 彭文山, 邢少华, 钱峣, 蔺存国, 侯健, 张大磊. 流动海水冲刷下TA2纯钛管路钝化膜腐蚀特性研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1038-1046.
[12] 张帮彦, 吴洪斌, 胡雪刚, 董家键, 郑世杰, 尹蔚蔚, 张方宇, 田礼熙, 刘光明. 机械合金化+放电等子烧结FeCrAl/La2Zr2O7 复合材料高温氧化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 965-971.
[13] 于佳汇, 王彤彤, 高云, 高荣杰. Bi2S3/TiO2 纳米复合材料的制备及其对304不锈钢的光生阴极保护性能研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 901-908.
[14] 解辉, 于超, 花靖, 蒋秀. NH+4浓度对N80钢在饱和CO2 的3%NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 745-754.
[15] 邢少华, 彭文山, 钱峣, 李相波, 马力, 张大磊. 海水流速对经抛光和钝化表面处理的2205不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.