Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (6): 1454-1464     CSTR: 32134.14.1005.4537.2023.360      DOI: 10.11902/1005.4537.2023.360
  研究报告 本期目录 | 过刊浏览 |
耐蚀钢筋在模拟混凝土孔隙液环境及海砂混凝土中钢筋在模拟海水环境中的钝化及腐蚀行为
谢文珍1,2, 王震宇2(), 韩恩厚2()
1.广州大学化学化工学院 广州 510000
2.广东腐蚀科学与技术创新研究院 广州 510000
Passivation Behavior of Corrosion Resistant Rebar Steels as Bare Steels in a Simulated Concrete Pore Fluid and as Rebar Steels Embedded in Concrete Made of Cement and Sea-sand in a Simulated Seawater
XIE Wenzhen1,2, WANG Zhenyu2(), HAN En-Hou2()
1. School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510000, China
2. Guangdong Institute of Corrosion Science and Technology Innovation, Guangzhou 510000, China
引用本文:

谢文珍, 王震宇, 韩恩厚. 耐蚀钢筋在模拟混凝土孔隙液环境及海砂混凝土中钢筋在模拟海水环境中的钝化及腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(6): 1454-1464.
Wenzhen XIE, Zhenyu WANG, En-Hou HAN. Passivation Behavior of Corrosion Resistant Rebar Steels as Bare Steels in a Simulated Concrete Pore Fluid and as Rebar Steels Embedded in Concrete Made of Cement and Sea-sand in a Simulated Seawater[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1454-1464.

全文: PDF(7119 KB)   HTML
摘要: 

利用电化学技术、微观分析技术,研究Cr10Mo1耐蚀钢筋和在不含Cl-模拟混凝土孔隙液以及埋入海砂混凝土中HRB400普通钢筋模拟海水环境中的钝化行为规律和腐蚀机理,并采用电阻探针技术建立钢筋腐蚀快速评价方法。结果表明:耐蚀钢筋在pH 11.5的模拟液中,表现出较好的钝化行为。在模拟海水环境中,耐蚀钢筋的钝化膜电阻阻值比普通钢筋更大、耐蚀钢筋的腐蚀电流密度也比普通钢筋更小,结合EDS测试和XRD测试,结果表明因存在Cr,通过钝化反应生成的Cr2O3使耐蚀钢筋表现出更优异的耐蚀性能。为了快速评价耐蚀钢筋的腐蚀行为,使用了电阻探针法在模拟海水环境中对其腐蚀速率进行计算,计算得出耐蚀钢筋的年腐蚀速率为0.0047 mm/a,并结合失重法测试的结果证实了此方法可以用作快速评价钢筋的腐蚀行为。

关键词 混凝土孔隙液海砂混凝土腐蚀电化学电阻探针模拟海水环境    
Abstract

The passivation behavior of Cr10Mo1corrosion-resistant rebar steel and ordinary HRB400 rebar steel either as bare steels in a Cl- free simulated concrete pore solution, or as rebar steels embedded in a concrete made of cement and reagent sea-sand in an artificial seawater 3.5% NaCl solution were studied by electrochemical technology and microscopic analysis technology, meanwhile the resistance probe technology was used to establish a rapid evaluation method of rebar corrosion. The results show that the corrosion resistant rebar steel exhibits better passivation behavior in the simulated pore solution with pH 11.5. In the second testing circumstance, the passivation film resistance value of the corrosion-resistant rebar steel is larger than that of the ordinary rebar steel, correspondingly, the corrosion current density of corrosion-resistant rebar steel is also smaller than that of the ordinary one. Results of EDS and XRD characterization show that due to the presence of Cr element, Cr2O3 generated by passivation reaction makes corrosion-resistant rebar steel exhibit better corrosion resistance. In order to rapidly evaluate the corrosion behavior of corrosion-resistant rebar steel, the resistance probe method was adopted to assess the corrosion rate of corrosion-resistant rebar steel in the second testing circumstance environment of seawater sand concrete. Consequently, the annual corrosion rate of corrosion-resistant bar steel was acquired to be 0.0047 mm/a. While the corrosion rate acquired by mass loss method dose further confirm that this resistance probe method may suitably be used to rapidly evaluate the corrosion behavior of steel bars within concretes.

Key wordsconcrete pore fluid    seawater sand concrete    corrosion electrochemistry    resistance probe    simulated seawater
收稿日期: 2023-10-08      32134.14.1005.4537.2023.360
ZTFLH:  TG174  
基金资助:国家重点研发计划(2021YFB3701700)
通讯作者: 王震宇,E-mail:zywang@icost.ac.cn,研究方向为腐蚀与防护技术;
韩恩厚,E-mail:ehhan@icost.ac.cn,研究方向为腐蚀与防护技术
Corresponding author: WANG Zhenyu, E-mail: zywang@icost.ac.cn
HAN En-Hou, E-mail: ehhan@icost.ac.cn
作者简介: 谢文珍,女,1999年生,硕士生
图1  耐蚀钢筋腐蚀监测装置图
图2  钢筋在不同pH模拟孔隙液中的开路电位
图3  钢筋在不同pH模拟孔隙液中的电化学阻抗图
图4  钢筋钝化的等效电路图
pHTime / dRs / Ω·cm2Rf / 103 Ω·cm2Rct / 106 Ω·cm2Qdl / 10-6 F·cm-2Qf / 10-6 F·cm-2
11.50580.7036.540.6312.4417.79
1839.7076.211.837.3016.02
2858.0082.672.296.2415.65
3795.0085.062.655.7315.54
4935.9098.583.025.2915.34
5887.10101.703.175.0715.60
6998.10111.803.664.7015.52
7941.70110.903.844.5515.37
81009.00110.403.824.4115.64
12.50116.9021.660.179.9020.73
1132.9035.070.756.2918.43
2133.7030.741.245.6817.45
3124.5027.221.595.4916.93
4136.5025.481.915.3716.59
5127.0025.472.135.2816.42
6136.9024.002.545.1916.11
7134.3024.552.805.12 × 10-615.95
8140.6024.272.905.01 × 10-616.11
13.5021.4926.020.1416.9824.20
122.9455.290.3614.2421.99
224.3754.620.3414.8621.12
321.6146.000.3113.0320.58
423.7344.910.3112.2820.48
522.1141.200.3111.6620.38
623.8836.120.3211.6220.29
724.1734.190.3311.2620.25
824.0634.240.3311.4120.26
HRB400-11.50131.30181.000.0821.1057.20
1142.4071.560.37122.0048.63
2142.30623.801.682.2945.28
3130.100.490.701.5446.98
4142.900.520.977.2446.44
5133.000.621.126.1646.10
6141.304.111.406.1945.47
7142.804.791.552.6945.25
8143.809.121.591.5345.26
表1  电化学阻抗谱的拟合结果
图5  钢筋在不同pH的模拟孔隙液中的动电位极化图
pHTimeIpitIcorrEcorrEpit
dμAnAmVmV
11.5210.1665.50-461.00600.80
410.2459.70-451.00675.90
69.9226.50-361.00699.60
810.5238.50-327.00640.30
12.5271.6166.20-388.00565.20
453.6641.50-437.00557.30
651.2772.40-342.00660.10
841.4640.00-365.00640.30
13.5289.4250.20-427.00521.70
498.4925.00-394.00529.60
654.4841.60-380.00573.10
891.2944.80-341.00577.10
表2  动电位极化的电化学特征参数
图6  在实际服役条件下耐蚀钢筋与普通钢筋HRB400的电化学阻抗谱图及等效电路图
TypeRs / Ω·cm2Rf / Ω·cm2Rct / Ω·cm2Qdl / F·cm-2Qf / F·cm-2
Corrosion resistant steel23.35912.80 × 10332.17942.50 × 10-67.63 × 10-3
HRB40027.331.36 × 10311.07948.10 × 10-64.63 × 10-3
表3  电化学阻抗的拟合结果
图7  在实际服役条件下耐蚀钢筋与普通钢筋HRB400的极化曲线图
Type

Icorr

μA

Ecorr

mV

Corrosion

rate

mm·a-1

Corrosion

resistant

steel

37.8-455.017.3
HRB400219.0-402.0100.2
表4  在实际服役条件下耐蚀钢筋与普通钢筋线性极化的拟合结果
图8  耐蚀钢筋和普通钢筋HRB400腐蚀前后的SEM图
图9  耐蚀钢筋和普通钢筋HRB400钝化后的EDS分析结果
图10  耐蚀钢筋和普通钢筋HRB400腐蚀产物的XRD图
TypeOriginalCorrodedLoseCorrosion
massmassmassrate
gggmm·a-1
Corrosion resistant steel63.514663.51060.00400.0061
HRB40065.977765.96230.01540.0238
表5  通过失重法计算真实服役条件下耐蚀钢筋与普通钢筋HRB400的腐蚀速率
1 Li X Z, Wu Q, Wang G, et al. Electrochemical characteristics of steel corrosion in seawater sea-sand concrete [J]. Concrete, 2020, (7): 20
1 (李薛忠, 吴 庆, 王 刚 等. 海水海砂混凝土中钢筋锈蚀的电化学特征 [J]. 混凝土, 2020, (7): 20)
2 Wang D Q, Ming J, Shi J J. Enhanced corrosion resistance of rebar in carbonated concrete pore solutions by Na2HPO4 and benzotriazole [J]. Corros. Sci., 2020, 174: 108830
3 He Z M, Shang M G, Qiao H X, et al. Constant current accelerated corrosion law of reinforced concrete based on EIS [J]. J. Mater. Sci. Eng., 2021, 39: 596
3 (何忠茂, 尚明刚, 乔宏霞 等. 基于交流阻抗(EIS)的钢筋混凝土恒电流加速腐蚀规律 [J]. 材料科学与工程学报, 2021, 39: 596)
4 Liu G J, Zhang Y S, Liu C, et al. Corrosion of steel in simulated concrete pore solution and equivalent circuits selection [J]. Mater. Rep., 2021, 35: 14072
4 (刘国建, 张云升, 刘 诚 等. 模拟混凝土孔溶液中钢筋腐蚀与等效电路选取 [J]. 材料导报, 2021, 35: 14072)
5 Cui L, Zhao Y, Chen S Q. Study on corrosion inhibition efficiency of steel bar with different rust inhibitors in simulated seawater concrete pore solution [J]. Highway, 2019, 64(11): 210
5 (崔 磊, 赵 耀, 陈士强. 模拟海水混凝土孔隙液中不同阻锈剂对钢筋腐蚀缓蚀效率的研究 [J]. 公路, 2019, 64(11): 210)
6 Wen C, Tian Y W, Wang G, et al. Electrochemical behavior of steel corrosion in microporous environment of marine concrete [J]. J. Guangdong Ocean Univ., 2022, 42(2): 126
6 (文 成, 田玉琬, 王 贵 等. 海工混凝土微孔隙环境中钢筋的腐蚀电化学行为 [J]. 广东海洋大学学报, 2022, 42(2): 126)
7 Tao Y K, Li S R. Corrosion behavior of high strength steel in reinforced concrete environment [J]. Corros. Prot., 2021, 42(7): 38
7 (陶永康, 李思锐. 高强钢筋在混凝土环境中的腐蚀行为 [J]. 腐蚀与防护, 2021, 42(7): 38)
8 Yan L B, Chouw N. A comparative study of steel reinforced concrete and flax fibre reinforced polymer tube confined coconut fibre reinforced concrete beams [J]. J. Reinf. Plast. Compos., 2013, 32: 1155
9 Etteyeb N, Sanchez M, Dhouibi L, et al. Effectiveness of pretreatment method to hinder rebar corrosion in concrete [J]. Corros. Eng. Sci. Technol., 2010, 45: 435
10 Jiang J Y, Wang D Q, Chu H Y, et al. The passive film growth mechanism of new corrosion-resistant steel rebar in simulated concrete pore solution: nanometer structure and electrochemical study [J]. Materials, 2017, 10: 412
11 Zuo L F, Zhang J C, Ma H, et al. Corrosion behavior of Cr-Ni alloyed corrosion resistant rebar in chloride environment [J]. Corros. Prot., 2017, 38: 83
11 (左龙飞, 张建春, 麻晗 等. 一种Cr-Ni合金化耐蚀钢筋在氯盐环境中的腐蚀行为 [J]. 腐蚀与防护, 2017, 38: 83)
12 Zhong Z H, Mo Y Q, Zhang K, et al. The steel corrosion mechanism and corrosion rate control in concrete [J]. J. South China Norm. Univ. (Nat. Sci. Ed.), 2022, 54(1): 48
12 (钟志恒, 莫烨强, 张 凯 等. 混凝土中钢筋的腐蚀机理与腐蚀速率控制研究 [J]. 华南师范大学学报(自然科学版), 2022, 54(1): 48)
13 Ai Z Y, Jiang J Y, Sun W, et al. Cathodic behaviour of new alloy corrosion-resistant steel Cr10Mo1 and its depression mechanism [J]. J. Southeast Univ. (Nat. Sci. Ed.), 2016, 46: 872
13 (艾志勇, 蒋金洋, 孙 伟 等. 新型合金耐蚀钢筋Cr10Mo1的阴极行为及其阻抑机制 [J]. 东南大学学报(自然科学版), 2016, 46: 872)
14 Zhang J C, Jiang J Y, Li Y, et al. Passive films formed on seawater corrosion resistant rebar 00Cr10MoV in simulated concrete pore solutions [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 441
14 (张建春, 蒋金洋, 李 阳 等. 耐海水腐蚀钢筋00Cr10MoV在模拟混凝土孔隙液中钝化膜的研究 [J]. 中国腐蚀与防护学报, 2016, 36: 441)
doi: 10.11902/1005.4537.2015.182
15 Hu S M, Liu Q S, Liu G, et al. Application status of corrosion monitoring technologies in the field of high-voltage direct current interference in buried pipelines [J]. Mater. Prot., 2023, 56(11): 139
15 (胡上茂, 刘青松, 刘 刚 等. 腐蚀监测技术在高压直流干扰埋地管道领域的应用现状 [J]. 材料保护, 2023, 56(11): 139)
16 Hou L, Li W H, Zheng H B, et al. Recent advances and development of corrosion prevention technologies for marine reinforced concrete structures [J]. Mater. Prot., 2017, 50(3): 62
16 (侯 磊, 李伟华, 郑海兵 等. 海洋钢筋混凝土结构防腐蚀技术研究进展 [J]. 材料保护, 2017, 50(3): 62)
17 Ai Z Y, Jiang J Y, Sun W, et al. Passive behaviour of Cr8Ni2 alloy corrosion-resistant steel in simulating concrete pore solutions with different pH values [J]. J. Southeast Univ. (Nat. Sci. Ed.), 2016, 46: 152
17 (艾志勇, 蒋金洋, 孙 伟 等. Cr8Ni2合金耐蚀钢筋在不同pH值模拟混凝土孔溶液中的钝化行为 [J]. 东南大学学报(自然科学版), 2016, 46: 152)
18 Lliso-Ferrando J R, Gasch I, Martínez-Ibernón A, et al. Effect of macrocell currents on rebar corrosion in reinforced concrete structures exposed to a marine environment [J]. Ocean Eng., 2022, 257: 111680
19 Wang J J, Liu J, Chen R N, et al. Microstructure and corrosion behavior of 9CrMo corrosion-resistant steel bars for marine engineering [J]. Iron Steel, 2023, 58(5): 112
19 (王进建, 刘 静, 陈润农 等. 海洋工程用9CrMo耐蚀钢筋组织及腐蚀行为 [J]. 钢铁, 2023, 58(5): 112)
doi: 10.13228/j.boyuan.issn0449-749x.20220610
20 Wan Y, Song F L, Li L J. Corrosion characteristics of carbon steel in simulated marine atmospheres [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 851
20 (万 晔, 宋芳龄, 李立军. 基于海洋大气环境因素影响下的碳钢腐蚀特征研究 [J]. 中国腐蚀与防护学报, 2022, 42: 851)
21 Ai Z Y, Jiang J Y, Sun W, et al. Enhanced passivation of alloy corrosion-resistant steel Cr10Mo1 under carbonation — Passive film formation, the kinetics and mechanism analysis [J]. Cem. Concr. Compos., 2018, 92: 178
22 Zhang Z H, Yu X P, Gong N, et al. Passivation behavior of Cr-modified rebar in simulated concrete pore solutions with different pH [J]. J. Mater. Res. Technol., 2023, 26: 246
23 Feng B, Weng Y J, Li X Y, et al. A novel coupon-type electrical resistance probe for environmental corrosion monitoring [J]. J. Shanghai Univ. (Nat. Sci.), 2015, 21: 88
23 (冯 蓓, 翁永基, 李相怡 等. 用于环境腐蚀监测的挂片型电阻探针 [J]. 上海大学学报(自然科学版), 2015, 21: 88)
24 Liu G Q, Zhang D F, Chen H X, et al. Electrochemical corrosion behavior of 2304 duplex stainless steel in a simulated pore solution in reinforced concrete serving in marine environment [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 204
24 (刘国强, 张东方, 陈昊翔 等. 2304双相不锈钢钢筋在混凝土孔隙模拟液中的电化学腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 204)
[1] 董征, 毛永祺, 孟洲, 陈向翔, 付传清, 陆晨涛. 应力作用下钢筋在模拟混凝土孔隙液中的钝化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1547-1556.
[2] 史先飞, 陈晓华, 满成. HRB400钢在模拟混凝土孔隙液中的自然钝化行为及耐蚀性能的研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1213-1222.
[3] 马小泽, 孟令东, 曹祥康, 肖松, 董泽华. 大气污染物硫酸铵和氯化钠混合盐粒沉降对电路板铜大气腐蚀的加速机制[J]. 中国腐蚀与防护学报, 2022, 42(4): 540-550.
[4] 唐荣茂, 刘光明, 师超, 张帮彦, 田继红, 甘鸿禹, 刘永强. 十二烷基苯磺酸钠在模拟混凝土孔隙液中对Q235钢缓蚀及吸附行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 857-863.
[5] 安易强, 王昕, 崔中雨. 硝酸钝化对304不锈钢在模拟混凝土孔隙液中点蚀的临界Cl-浓度的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 804-810.
[6] 盖喜鹏, 雷黎, 崔中雨. 304不锈钢在模拟混凝土孔隙液中的点蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 646-652.
[7] 罗伟文, 季韬, 林魁. 水泥类型对海砂混凝土在生物硫酸腐蚀下劣化影响的研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 691-696.
[8] 林修洲, 杨丽, 梅拥军, 郑兴文, 罗淑文, 崔学军. 飞机起落架镀镉4130钢在甲酸钾溶液薄液膜下腐蚀电化学行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 567-574.
[9] 张建春,蒋金洋,李阳,施锦杰,左龙飞,王丹芊,麻晗. 耐海水腐蚀钢筋00Cr10MoV在模拟混凝土孔隙液中钝化膜的研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 441-449.
[10] 冯兴国,卢向雨,左禹,陈达. 应变对混凝土孔隙液中不锈钢钝化性能影响的电化学研究[J]. 中国腐蚀与防护学报, 2015, 35(4): 372-378.
[11] 余润兰 . 铁闪锌矿的腐蚀电化学研究[J]. 中国腐蚀与防护学报, 2004, 24(4): 226-229 .