Please wait a minute...
中国腐蚀与防护学报  2007, Vol. 27 Issue (2): 74-79     
  研究报告 本期目录 | 过刊浏览 |
304不锈钢晶间腐蚀过程中的电化学阻抗谱特征
秦丽雁;宋诗哲;卢玉琢
天津大学材料学院
EIS CHARACTERISTICS OF 304 STAINLESS STEEL DURING INTERGRANULAR CORROSION
;;
天津大学材料学院
全文: PDF(1143 KB)  
摘要: 用电化学阻抗谱(EIS)方法研究了固溶态、敏化态304不锈钢在0.5mol/L H2SO4+0.01mol/L KSCN溶液中的阻抗谱特征.研究表明,不锈钢在不同极化电位下的阻抗谱呈现活性溶解、活化-钝化、钝化及再活化的特征.达到再活化之前,固溶态和敏化态的不锈钢在0.5mol/L H2SO4+0.01mol/L KSCN溶液中呈现相同的EIS特征;而在再活化区,钝化膜局部溶解,EIS图有两个容抗弧,低频容抗弧延伸到第二象限,呈现负电阻特征,低频下敏化态比固溶态不锈钢阻抗模值小一个数量级.
关键词 不锈钢晶间腐蚀电化学阻抗谱    
Abstract:Electrochemical impedance spectroscopy (EIS) measurements were performed on sensitized and solutioned 304 stainless steels respectively in the process of Electrochemical potentiodynamic reactivation (EPR) polarization in 0.5mol/L H2SO4+0.01mol/L KSCN solution.The variation rules of impedance resistance in process of EPR polarization were analyzed.It was found that the EIS spectra of the stainless steels during EPR polarization exhibited features of active dissolution,activation-passivation,passivation and reactivation.Before reactivation,the two kinds of stainless steels had the same EIS characteristics.In the reactivating region the passivated film dissolved partially and the impedance modulus of the sensitized stainless steel was one magnitude order smaller than that of the solution-treated stainless steel,indicating that intergranular corrosion had occurred on the surface of the sensitized stainless steel.In addition two capacitive loops appeared in the EIS of the sensitized stainless steel and it was quite interesting that the second arc at the low frequency range was actually a negative resistance capacitive loop.These results may provide essential basis for detecting intergranular corrosion susceptibility of stainless steel by electrochemical impedance spectroscopy.
Key wordsstainless steel    intergranular corrosion    electrochemical impedance spectroscopy
收稿日期: 2005-10-31     
ZTFLH:  TG174.3  
通讯作者: 秦丽雁      E-mail: victorya@163.com.cn

引用本文:

秦丽雁; 宋诗哲; 卢玉琢 . 304不锈钢晶间腐蚀过程中的电化学阻抗谱特征[J]. 中国腐蚀与防护学报, 2007, 27(2): 74-79 .

链接本文:

https://www.jcscp.org/CN/Y2007/V27/I2/74

[1]Fang Z,Zhang Y L,Wu Y S.Detecting susceptibility to intergranularcorrosion of 308L stainless steel by EPR method[J].Corros.Sci.Prot.Technol.,1996,8:87-93(方智,张玉林,吴荫顺等.电化学动电位再活化法评价308L不锈钢的晶间腐蚀敏感性[J].腐蚀科学与防护技术,1996,8:87-93)
[2]Fang Z,Wu Y S,Zhang L,et al.Application of the modified electro-chemical potentiodynamic reactivation method to evaluate intergranu-lar corrosion susceptibility of stainless steel[J].Corrosion,1998,54:339-346
[3]Matula M,Hyspecka L,Svoboda M,et al.Intergranular corrosion ofAISI 316L steel[J].Mater.Charact.,2001,46:203-210
[4]Huang C A,Chang Y Z,Chen S C.The electrochemical behavior ofaustenitic stainless steel with different degrees of sensitization in thetranspassive potential region in 1 mol/L H2SO4containing chloride[J].Corros.Sci.,2004,46:1501-1513
[5]Cihal C,Desestret A,Froment M,et al.Tests for evaluation of sensi-bility of stainless steels to intergranular corrosion[A].Proc.5th Eu-ropean Corros.Cong[C].Paris,1973,249-255
[6]Qin L Y,Dong Z D.Application of electrochemical method to evalu-ate intergranular corrosion susceptibility of stainless steels[J].TaiGang Science and Technology,1991,3:80-86(秦丽雁,董征东.用电化学方法测量不锈钢晶间腐蚀的敏感性[J].太钢科技,1991,3:80-86)
[7]Conde A,Damborenea J de.Evaluation of exfoliation susceptibility bymeans of the electrochemical impedance spectroscopy[J].Corros.Sci.,2000,42:1363-1377
[8]Yu F Z,Ma D Z,Liu G R,et al.Corrosion and Protection HandbookI.Corrosion theories tests and detections[M].Beijing:Chemical In-dustry Press,1990,70-80(于福州,马德章,刘国瑞等.腐蚀与防护手册第一册,腐蚀理论试验及监测[M].北京:化学工业出版社.1990,70-80)
[9]Bastidas J M,Lpez MF,Gutirrez A,Torres C L.Chemical analysisof passive films on type AISI 304 stainless steel using soft X-rayabsorption spectroscopy[J].Corros.Sci.,1998,40:431-438
[10]Cao C N,Zhang J Q.An Introduction to Electrochemical ImpedanceSpectroscopy[M].Beijing:Science Press,2002,45-75(曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002.45-75)
[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[3] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[5] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[6] 赵柏杰, 范益, 李镇镇, 张博威, 程学群. 不同类型接触面对316L不锈钢缝隙腐蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[7] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[8] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[9] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[10] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[11] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[12] 骆鸿,高书君,肖葵,董超芳,李晓刚. 磁控溅射工艺对CrN薄膜及其腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[13] 付安庆,赵密锋,李成政,白艳,朱文军,马磊,熊茂县,谢俊峰,雷晓维,吕乃欣. 激光表面熔凝对超级13Cr不锈钢组织与性能的影响研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 446-452.
[14] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[15] 李雨,关蕾,王冠,张波,柯伟. 机械应力对不锈钢点蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.