Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (3): 215-226    DOI: 10.11902/1005.4537.2018.090
  综合评述 本期目录 | 过刊浏览 |
机械应力对不锈钢点蚀行为的影响
李雨1,关蕾1(),王冠1,张波2,柯伟2
1. 广东工业大学机电工程学院 广州 510006
2. 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
Influence of Mechanical Stresses on Pitting Corrosion of Stainless Steel
Yu LI1,Lei GUAN1(),Guan WANG1,Bo ZHANG2,Wei KE2
1. School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
2. CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(3998 KB)   HTML
摘要: 

综述了3类机械应力对不锈钢点蚀萌生与生长各个阶段影响的研究进展,包括单向应力、交变应力及表面机械残余应力对不锈钢点蚀萌生、亚稳点蚀生长、亚稳点蚀向稳态点蚀转变以及稳态点蚀生长行为的影响;总结了相关的研究方法并分析了不同类型应力及水平影响点蚀各个阶段的原因;展望了今后对机械应力作用下不锈钢点蚀行为研究的发展趋势和重点。

关键词 点蚀不锈钢单向应力交变应力残余应力    
Abstract

Pitting corrosion has been found to be responsible for the nucleation of stress corrosion and corrosion fatigue cracks of stainless steel. Meanwhile, the nucleation and growth of pits are both closely related to the stress state, so that it is much more reliable and practical for the corrosion life prediction of mechanical parts by considering the coupling effect of stress and corrosive environment on the pitting corrosion behavior. In addition, such research contributes for us to understand deeply insight into the pitting mechanism and so that to optimize the manufacture technology of stainless steel. This paper reviews the influence of mechanical stresses on every stage of pitting corrosion, including the uniaxial loading, cyclic loading and residual stress on the pitting behavior of the initiation, growth of metastable pitting, transformation from metastable to stable pitting and growth of stable pitting. The relevant research methods are summarized and the effect of mechanical stresses on each stage of pitting corrosion is also analyzed. This work would also provide discussions and outlook of the unresolved issues.

Key wordspitting corrosion    stainless steel    uniaxial stress    cyclic stress    residual stress
收稿日期: 2018-06-28     
ZTFLH:  TG172  
基金资助:国家自然科学基金(51701047)
通讯作者: 关蕾     E-mail: lguan@gdut.edu.cn
Corresponding author: Lei GUAN     E-mail: lguan@gdut.edu.cn
作者简介: 李雨,男,1989年生,博士

引用本文:

李雨,关蕾,王冠,张波,柯伟. 机械应力对不锈钢点蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
Yu LI, Lei GUAN, Guan WANG, Bo ZHANG, Wei KE. Influence of Mechanical Stresses on Pitting Corrosion of Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2019, 39(3): 215-226.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.090      或      https://www.jcscp.org/CN/Y2019/V39/I3/215

图1  LSP原理示意图[29]
图2  激光喷丸前后316L SS在Hank's溶液中的极化曲线[33]
图3  典型的亚稳点蚀暂态电流信号示意图
图4  不锈钢在200 MPa外加应力作用下亚稳点蚀生长2 s时等效塑性应变分布[47]
图5  点蚀坑口覆盖膜破裂时间对200 MPa应力下不锈钢亚稳点蚀暂态电流和点蚀稳定积的影响[47]
图6  载荷作用下不锈钢中两个相邻亚稳蚀坑与单个亚稳蚀坑生长过程中的暂态电流及电流密度曲线[49]
图7  不同变形度的不锈钢在碳钢孔隙溶液中 (pH=9,0.05 mol/L Cl-) 经0.1 VSCE恒电位极化得到的典型亚稳点蚀暂态电流[59]
图8  304不锈钢在不同循环加载应力幅作用下于1 mol/L NaCl溶液 (pH值为3) 中恒电位 (0.05 V (SCE)) 极化所监测到的典型亚稳点蚀暂态信号[62]
图9  X射线断层成像点蚀坑观察[72]
[1] Mai W J, Soghrati S. A phase field model for simulating the stress corrosion cracking initiated from pits [J]. Corros. Sci., 2017, 125: 87
[2] Wang W G, Zhou A N, Fu G Y, et al. Evaluation of stress intensity factor for cast iron pipes with sharp corrosion pits [J]. Eng. Fail. Anal., 2017, 81: 254
[3] Arzaghi E, Abbassi R, Garaniya V, et al. Developing a dynamic model for pitting and corrosion-fatigue damage of subsea pipelines [J]. Ocean Eng., 2018, 150: 391
[4] Zhan Z X, Hu W P, Shen F, et al. Fatigue life calculation for a specimen with an impact pit considering impact damage, residual stress relaxation and elastic-plastic fatigue damage [J]. Int. J. Fatigue, 2017, 96: 208
[5] Chen J, Diao B, He J J, et al. Equivalent surface defect model for fatigue life prediction of steel reinforcing bars with pitting corrosion [J]. Int. J. Fatigue, 2018, 110: 153
[6] Hoar T P, Jacob W R. Breakdown of passivity of stainless steel by halide ions [J]. Nature, 1967, 216: 1299
[7] Burstein G T, Pistorius P C, Mattin S P. The nucleation and growth of corrosion pits on stainless steel [J]. Corros. Sci., 1993, 35: 57
[8] Frankel G S. Pitting corrosion of metals-a review of the critical factors [J]. J. Electrochem. Soc., 1998, 145: 2186
[9] Burstein G T, Liu C, Souto R M, et al. Origins of pitting corrosion [J]. Corros. Eng. Sci. Technol., 2004, 39: 25
[10] Urquidi M, Macdonald D D. Solute-vacancy interaction model and the effect of minor alloying elements on the initiation of pitting corrosion [J]. J. Electrochem. Soc., 1985, 132: 555
[11] Galvele J R. Transport processes and the mechanism of pitting of metals [J]. J. Electrochem. Soc., 1976, 123: 464
[12] Bardwell J A, MacDougall B, Sproule G I. Use of SIMS to investigate the induction stage in the pitting of iron [J]. J. Electrochem. Soc., 1989, 136: 1331
[13] Baker M A, Castle J E. The initiation of pitting corrosion of stainless steels at oxide inclusions [J]. Corros. Sci., 1992, 33: 1295
[14] Williford R E, F Jr WindischC , Jones R H. In situ observations of the early stages of localized corrosion in type 304 SS using the electrochemical atomic force microscope [J]. Mater. Sci. Eng., 2000, A288: 54
[15] Jun J, Holguin K, Frankel G S. Pitting corrosion of very clean type 304 stainless steel [J]. Corrosion, 2014, 70: 146
[16] Wijesinghe T L S L, Blackwood D J. Real time pit initiation studies on stainless steels: The effect of sulphide inclusions [J]. Corros. Sci., 2007, 49: 1755
[17] Vuillemin B, Philippe X, Oltra R, et al. SVET, AFM and AES study of pitting corrosion initiated on MnS inclusions by microinjection [J]. Corros. Sci., 2003, 45: 1143
[18] Yang Q, Yu J G, Luo J L. The influence of hydrogen and tensile stress on passivity of type 304 stainless steel [J]. J. Electrochem. Soc., 2003, 150: B389
[19] Tanahashi K, Inoue N. Non-equilibrium thermodynamic analysis on the behaviour of point defects in growing silicon crystals: Effects of stress [J]. J. Mater. Sci.: Mater. Electron., 1999, 10: 359
[20] Shi Z M, Lin H C, Cao C N, et al. The features of electrochemical noise of stainless steel during straining I. The characteristics of random fluctuation of potential under constant loading [J]. J. Chin. Soc. Corros. Prot., 1993, 13: 156
[20] (史志明, 林海潮, 曹楚南等. 不锈钢应变过程中电化学噪声的特征I.恒载荷拉伸条件下电位随机波动的特征 [J]. 中国腐蚀与防护学报, 1993, 13: 156)
[21] Sriraman M R, Pidaparti R M. Crack initiation life of materials under combined pitting corrosion and cyclic loading [J]. J. Mater. Eng. Perform., 2010, 19: 7
[22] Huang X G. Mechanism study of pit evolution and crack propagation for corrosion fatigue [D]. Shanghai: Shanghai Jiao Tong University, 2013: 54
[22] (黄小光. 腐蚀疲劳点蚀演化与裂纹扩展机理研究 [D]. 上海: 上海交通大学, 2013: 54)
[23] Sch?nbauer B M, Perlega A, Karr U P, et al. Pit-to-crack transition under cyclic loading in 12% Cr steam turbine blade steel [J]. Int. J. Fatigue, 2015, 76(10): 19
[24] Xie J H, Wu Y S. Pitting property of 316L stainless steel under dynamic stress in Hank's solution [A]. '96 China Materials Seminar [C]. Beijing, 1996: 471
[24] (谢建辉, 吴荫顺. 316L不锈钢在Hank's溶液中于动应力作用下的点蚀性能 [A]. '96中国材料研讨会论文集 (生物及环境材料) [C]. 北京, 1996: 471)
[25] Huang Y H, Tu S T, Xuan F Z. Pit to crack transition behavior in proportional and non-proportional multiaxial corrosion fatigue of 304 stainless steel [J]. Eng. Fract. Mech., 2017, 184: 259
[26] Gutman E M. Mechanochemistry of Solid Surfaces [M]. Singapore: World Scientific, 1994
[27] Van Boven G, Chen W, Rogge R. The role of residual stress in neutral pH stress corrosion cracking of pipeline steels. Part I: pitting and cracking occurrence [J]. Acta Mater., 2007, 55: 29
[28] Peguet L, Malki B, Baroux B. Influence of cold working on the pitting corrosion resistance of stainless steels [J]. Corros. Sci., 2007, 49: 1933
[29] Zhang X C, Zhang Y K, Lu J Z, et al. Improvement of fatigue life of Ti-6Al-4V alloy by laser shock peening [J]. Mater. Sci. Eng., 2010, A527: 3411
[30] Zhang L, Zhang Y K, Lu J Z, et al. Effects of laser shock processing on electrochemical corrosion resistance of ANSI 304 stainless steel weldments after cavitation erosion [J]. Corros. Sci., 2013, 66: 5
[31] Lu J Z, Qi H, Luo K Y, et al. Corrosion behaviour of AISI 304 stainless steel subjected to massive laser shock peening impacts with different pulse energies [J]. Corros. Sci., 2014, 80: 53
[32] Prabhakaran S, Kulkarni A, Vasanth G, et al. Laser shock peening without coating induced residual stress distribution, wettability characteristics and enhanced pitting corrosion resistance of austenitic stainless steel [J]. Appl. Surf. Sci., 2018, 428: 17
[33] Gupta R K, Prasad N, Rai A K, et al. Corrosion study on laser shock peened 316L stainless steel in simulated body fluid and chloride medium [J]. Lasers Manuf. Mater. Process., 2018, 5: 270
[34] Peyre P, Carboni C, Forget P, et al. Influence of thermal and mechanical surface modifications induced by laser shock processing on the initiation of corrosion pits in 316L stainless steel [J]. J. Mater. Sci., 2007, 42: 6866
[35] Lu B T, Chen Z K, Luo J L, et al. Pitting and stress corrosion cracking behavior in welded austenitic stainless steel [J]. Electrochim. Acta, 2005, 50: 1391
[36] Suter T, Webb E G, Bo?hni H, et al. Pit initiation on stainless steels in 1 M NaCl with and without mechanical stress [J]. J. Electrochem. Soc., 2001, 148: B174
[37] Solomon N, Solomon I. Effect of deformation-induced phase transformation on AISI 316 stainless steel corrosion resistance [J]. Eng. Fail. Anal., 2017, 79: 865
[38] Karthik D, Swaroop S. Influence of laser peening on phase transformation and corrosion resistance of AISI 321 steel [J]. J. Mater. Eng. Perform., 2016, 25: 2642
[39] Vignal V, Josse R O C. Local analysis of the mechanical behaviour of inclusions-containing stainless steels under straining conditions [J]. Scr. Mater., 2003, 49: 779
[40] Ren Y B, Zhao H C, Liu W P, et al. Effect of cold deformation on pitting corrosion of 00Cr18Mn15Mo2N0.86 stainless steel for coronary stent application [J]. Mater. Sci. Eng., 2016, C60: 293
[41] Luo K Y. Investigation of laser shock processing on corrosion properties and micro-plastic strengthening mechanism of stainless steel [D]. Zhenjiang: Jiangsu University, 2012: 120
[41] (罗开玉. 激光冲击不锈钢抗腐蚀性能及微观强化机理研究 [D]. 镇江: 江苏大学, 2012: 120)
[42] Xu D M, Li G Q, Wan X L, et al. Deformation behavior of high yield strength-High ductility ultrafine-grained 316LN austenitic stainless steel [J]. Mater. Sci. Eng., 2017, A688: 407
[43] Beccaria A M, Poggi G, Castello G. Influence of passive film composition and sea water pressure on resistance to localised corrosion of some stainless steels in sea water [J]. Br. Corros. J., 2013, 30: 283
[44] Williams D E, Stewart J, Balkwill P H. The nucleation, growth and stability of micropits in stainless steel [J]. Corros. Sci., 1994, 36: 1213
[45] Tian W M, Du N, Li S M, et al. Metastable pitting corrosion of 304 stainless steel in 3.5%NaCl solution [J]. Corros. Sci., 2014, 85: 372
[46] Pistorius P C, Burstein G T. Metastable pitting corrosion of stainless steel and the transition to stability [J]. Philos. Trans.: Phys. Sci. Eng., 1992, 341: 531
[47] Wang H T, Han E-H. Simulation of metastable corrosion pit development under mechanical stress [J]. Electrochim. Acta, 2013, 90: 128
[48] Lu B T, Luo J L, Norton P R, et al. Effects of dissolved hydrogen and elastic and plastic deformation on active dissolution of pipeline steel in anaerobic groundwater of near-neutral pH [J]. Acta Mater., 2009, 57: 41
[49] Wang H T, Han E-H. Computational simulation of corrosion pit interactions under mechanochemical effects using a cellular automaton/finite element model [J]. Corros. Sci., 2016, 103: 305
[50] Guo S, Wang H T, Han E-H. Computational evaluation of the influence of various uniaxial load levels on pit growth of stainless steel under mechanoelectrochemical interactions [J]. J. Electrochem. Soc., 2018, 165: C515
[51] Williams D E, Westcott C, Fleischmann M. Stochastic models of pitting corrosion of stainless steels I. Modeling of the initiation and growth of pits at constant potential [J]. J. Electrochem. Soc., 1985, 132: 1796
[52] Williams D E, Westcott C, Fleischmann M. Stochastic models of pitting corrosion of stainless steels II. Measurement and interpretation of data at constant potential [J]. J. Electrochem. Soc., 1985, 132: 1804
[53] You Y H, Wang B R, Hu H Y. The stochastic model of pitting corrosion of metals [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2017, 283: 012012
[54] Lunt T T, Pride S T, Scully J R, et al. Cooperative stochastic behavior in localized corrosion II. Experiments [J]. J. Electrochem. Soc., 1997, 144: 1620
[55] Shibata T. Stochastic studies of passivity breakdown [J]. Corros. Sci., 1990, 31: 413
[56] Zhang T, Yan Y G, Shao Y W, et al. A stochastic analysis of the effect of hydrostatic pressure on the pit corrosion of Fe–20Cr alloy [J]. Electrochim. Acta, 2009, 54: 3915
[57] Yang Z X. Study of corrosion and stress corrosion cracking of X70 pipeline steel in simulated deep-sea environment [D]. Beijing: University of Science and Technology Beijing, 2017: 94
[57] (杨子旋. X70钢在模拟深海环境中腐蚀及应力腐蚀行为研究 [D]. 北京: 北京科技大学, 2017: 94)
[58] Yang Z X, Kan B, Li J X, et al. A statistical study on the effect of hydrostatic pressure on metastable pitting corrosion of X70 pipeline steel [J]. Materials, 2017, 10: 1307
[59] Feng X G, Lu X Y, Zuo Y, et al. The effect of deformation on metastable pitting of 304 stainless steel in chloride contaminated concrete pore solution [J]. Corros. Sci., 2016, 103: 223
[60] Vignal V, Mary N, Valot C, et al. Influence of elastic deformation on initiation of pits on duplex stainless steels [J]. Electrochem. Solid-State Lett., 2004, 7: C39
[61] Oltra R, Vignal V. Recent advances in local probe techniques in corrosion research-analysis of the role of stress on pitting sensitivity [J]. Corros. Sci., 2007, 49: 158
[62] Guan L, Zhang B, Yong X P, et al. Effects of cyclic stress on the metastable pitting characteristic for 304 stainless steel under potentiostatic polarization [J]. Corros. Sci., 2015, 93: 80
[63] Guan L, Zhang B, Yong X P, et al. Quantitative understanding of the current responses under elastic cyclic loading for 304 stainless steel [J]. J. Electrochem. Soc., 2016, 163: C627
[64] Turnbull A, McCartney L, Zhou S. A model to predict the evolution of pitting corrosion and the pit-to-crack transition incorporating statistically distributed input parameters [J]. Corros. Sci., 2006, 48: 2084
[65] Navidi W, Shayer Z. An application of stochastic modeling to pitting of Spent Nuclear Fuel canisters [J]. Prog. Nucl. Energy, 2018, 107: 48
[66] Soltis J. Passivity breakdown, pit initiation and propagation of pits in metallic materials – Review [J]. Corros. Sci., 2015, 90: 5
[67] Wang C G, Wu L P, Xue F, et al. Electrochemical noise analysis on the pit corrosion susceptibility of biodegradable AZ31 magnesium alloy in four types of simulated body solutions [J]. J. Mater. Sci. Technol., 2018, 34: 1876
[68] Xie C Y. Research on pitting corrosion of metals with the effects of mechanical stress and structural reliability analysis method [D]. Chengdu: University of Electronic Science and Technology of China, 2017: 114
[68] (谢朝阳. 应力作用下金属点蚀与结构可靠性分析方法研究 [D]. 成都: 电子科技大学, 2017: 114)
[69] Turnbull A, Wright L, Crocker L. New insight into the pit-to-crack transition from finite element analysis of the stress and strain distribution around a corrosion pit [J]. Corros. Sci., 2010, 52: 1492
[70] Huang Y H, Tu S T, Xuan F Z. Modeling and simulation of pit chemistry of 304 austenitic stainless steel under applied stress in sodium chloride solution [J]. Nucl. Eng. Des., 2013, 257: 45
[71] Shimahashi N, Muto I, Sugawara Y, et al. Effects of corrosion and cracking of sulfide inclusions on pit initiation in stainless steel [J]. J. Electrochem. Soc., 2014, 161: C494
[72] Almuaili F A, McDonald S A, Withers P J, et al. Strain-induced reactivation of corrosion pits in austenitic stainless steel [J]. Corros. Sci., 2017, 125: 12
[73] Kondo Y. Prediction of fatigue crack initiation life based on pit growth [J]. Corrosion, 1989, 45: 7
[74] Ishihara S, Saka S, Nan Z Y, et al. Prediction of corrosion fatigue lives of aluminium alloy on the basis of corrosion pit growth law [J]. Fatigue Fract. Eng. Mater. Struct., 2006, 29: 472
[75] Amiri M, Arcari A, Airoldi L, et al. A continuum damage mechanics model for pit-to-crack transition in AA2024-T3 [J]. Corros. Sci., 2015, 98: 678
[76] Ma J, Zhang B, Wang J Q, et al. Anisotropic 3D growth of corrosion pits initiated at MnS inclusions for A537 steel during corrosion fatigue [J]. Corros. Sci., 2010, 52: 2867
[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[3] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[5] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[6] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[7] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[8] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[9] 贺三, 孙银娟, 张志浩, 成杰, 邱云鹏, 高超洋. 20#钢在含饱和CO2的离子液体醇胺溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[10] 赵柏杰, 范益, 李镇镇, 张博威, 程学群. 不同类型接触面对316L不锈钢缝隙腐蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[11] 李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[12] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[13] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[14] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[15] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.