|
|
机械应力对不锈钢点蚀行为的影响 |
李雨1,关蕾1( ),王冠1,张波2,柯伟2 |
1. 广东工业大学机电工程学院 广州 510006 2. 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016 |
|
Influence of Mechanical Stresses on Pitting Corrosion of Stainless Steel |
Yu LI1,Lei GUAN1( ),Guan WANG1,Bo ZHANG2,Wei KE2 |
1. School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China 2. CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
李雨,关蕾,王冠,张波,柯伟. 机械应力对不锈钢点蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
Yu LI,
Lei GUAN,
Guan WANG,
Bo ZHANG,
Wei KE.
Influence of Mechanical Stresses on Pitting Corrosion of Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2019, 39(3): 215-226.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2018.090
或
https://www.jcscp.org/CN/Y2019/V39/I3/215
|
[1] | Mai W J, Soghrati S. A phase field model for simulating the stress corrosion cracking initiated from pits [J]. Corros. Sci., 2017, 125: 87 | [2] | Wang W G, Zhou A N, Fu G Y, et al. Evaluation of stress intensity factor for cast iron pipes with sharp corrosion pits [J]. Eng. Fail. Anal., 2017, 81: 254 | [3] | Arzaghi E, Abbassi R, Garaniya V, et al. Developing a dynamic model for pitting and corrosion-fatigue damage of subsea pipelines [J]. Ocean Eng., 2018, 150: 391 | [4] | Zhan Z X, Hu W P, Shen F, et al. Fatigue life calculation for a specimen with an impact pit considering impact damage, residual stress relaxation and elastic-plastic fatigue damage [J]. Int. J. Fatigue, 2017, 96: 208 | [5] | Chen J, Diao B, He J J, et al. Equivalent surface defect model for fatigue life prediction of steel reinforcing bars with pitting corrosion [J]. Int. J. Fatigue, 2018, 110: 153 | [6] | Hoar T P, Jacob W R. Breakdown of passivity of stainless steel by halide ions [J]. Nature, 1967, 216: 1299 | [7] | Burstein G T, Pistorius P C, Mattin S P. The nucleation and growth of corrosion pits on stainless steel [J]. Corros. Sci., 1993, 35: 57 | [8] | Frankel G S. Pitting corrosion of metals-a review of the critical factors [J]. J. Electrochem. Soc., 1998, 145: 2186 | [9] | Burstein G T, Liu C, Souto R M, et al. Origins of pitting corrosion [J]. Corros. Eng. Sci. Technol., 2004, 39: 25 | [10] | Urquidi M, Macdonald D D. Solute-vacancy interaction model and the effect of minor alloying elements on the initiation of pitting corrosion [J]. J. Electrochem. Soc., 1985, 132: 555 | [11] | Galvele J R. Transport processes and the mechanism of pitting of metals [J]. J. Electrochem. Soc., 1976, 123: 464 | [12] | Bardwell J A, MacDougall B, Sproule G I. Use of SIMS to investigate the induction stage in the pitting of iron [J]. J. Electrochem. Soc., 1989, 136: 1331 | [13] | Baker M A, Castle J E. The initiation of pitting corrosion of stainless steels at oxide inclusions [J]. Corros. Sci., 1992, 33: 1295 | [14] | Williford R E, F Jr WindischC , Jones R H. In situ observations of the early stages of localized corrosion in type 304 SS using the electrochemical atomic force microscope [J]. Mater. Sci. Eng., 2000, A288: 54 | [15] | Jun J, Holguin K, Frankel G S. Pitting corrosion of very clean type 304 stainless steel [J]. Corrosion, 2014, 70: 146 | [16] | Wijesinghe T L S L, Blackwood D J. Real time pit initiation studies on stainless steels: The effect of sulphide inclusions [J]. Corros. Sci., 2007, 49: 1755 | [17] | Vuillemin B, Philippe X, Oltra R, et al. SVET, AFM and AES study of pitting corrosion initiated on MnS inclusions by microinjection [J]. Corros. Sci., 2003, 45: 1143 | [18] | Yang Q, Yu J G, Luo J L. The influence of hydrogen and tensile stress on passivity of type 304 stainless steel [J]. J. Electrochem. Soc., 2003, 150: B389 | [19] | Tanahashi K, Inoue N. Non-equilibrium thermodynamic analysis on the behaviour of point defects in growing silicon crystals: Effects of stress [J]. J. Mater. Sci.: Mater. Electron., 1999, 10: 359 | [20] | Shi Z M, Lin H C, Cao C N, et al. The features of electrochemical noise of stainless steel during straining I. The characteristics of random fluctuation of potential under constant loading [J]. J. Chin. Soc. Corros. Prot., 1993, 13: 156 | [20] | (史志明, 林海潮, 曹楚南等. 不锈钢应变过程中电化学噪声的特征I.恒载荷拉伸条件下电位随机波动的特征 [J]. 中国腐蚀与防护学报, 1993, 13: 156) | [21] | Sriraman M R, Pidaparti R M. Crack initiation life of materials under combined pitting corrosion and cyclic loading [J]. J. Mater. Eng. Perform., 2010, 19: 7 | [22] | Huang X G. Mechanism study of pit evolution and crack propagation for corrosion fatigue [D]. Shanghai: Shanghai Jiao Tong University, 2013: 54 | [22] | (黄小光. 腐蚀疲劳点蚀演化与裂纹扩展机理研究 [D]. 上海: 上海交通大学, 2013: 54) | [23] | Sch?nbauer B M, Perlega A, Karr U P, et al. Pit-to-crack transition under cyclic loading in 12% Cr steam turbine blade steel [J]. Int. J. Fatigue, 2015, 76(10): 19 | [24] | Xie J H, Wu Y S. Pitting property of 316L stainless steel under dynamic stress in Hank's solution [A]. '96 China Materials Seminar [C]. Beijing, 1996: 471 | [24] | (谢建辉, 吴荫顺. 316L不锈钢在Hank's溶液中于动应力作用下的点蚀性能 [A]. '96中国材料研讨会论文集 (生物及环境材料) [C]. 北京, 1996: 471) | [25] | Huang Y H, Tu S T, Xuan F Z. Pit to crack transition behavior in proportional and non-proportional multiaxial corrosion fatigue of 304 stainless steel [J]. Eng. Fract. Mech., 2017, 184: 259 | [26] | Gutman E M. Mechanochemistry of Solid Surfaces [M]. Singapore: World Scientific, 1994 | [27] | Van Boven G, Chen W, Rogge R. The role of residual stress in neutral pH stress corrosion cracking of pipeline steels. Part I: pitting and cracking occurrence [J]. Acta Mater., 2007, 55: 29 | [28] | Peguet L, Malki B, Baroux B. Influence of cold working on the pitting corrosion resistance of stainless steels [J]. Corros. Sci., 2007, 49: 1933 | [29] | Zhang X C, Zhang Y K, Lu J Z, et al. Improvement of fatigue life of Ti-6Al-4V alloy by laser shock peening [J]. Mater. Sci. Eng., 2010, A527: 3411 | [30] | Zhang L, Zhang Y K, Lu J Z, et al. Effects of laser shock processing on electrochemical corrosion resistance of ANSI 304 stainless steel weldments after cavitation erosion [J]. Corros. Sci., 2013, 66: 5 | [31] | Lu J Z, Qi H, Luo K Y, et al. Corrosion behaviour of AISI 304 stainless steel subjected to massive laser shock peening impacts with different pulse energies [J]. Corros. Sci., 2014, 80: 53 | [32] | Prabhakaran S, Kulkarni A, Vasanth G, et al. Laser shock peening without coating induced residual stress distribution, wettability characteristics and enhanced pitting corrosion resistance of austenitic stainless steel [J]. Appl. Surf. Sci., 2018, 428: 17 | [33] | Gupta R K, Prasad N, Rai A K, et al. Corrosion study on laser shock peened 316L stainless steel in simulated body fluid and chloride medium [J]. Lasers Manuf. Mater. Process., 2018, 5: 270 | [34] | Peyre P, Carboni C, Forget P, et al. Influence of thermal and mechanical surface modifications induced by laser shock processing on the initiation of corrosion pits in 316L stainless steel [J]. J. Mater. Sci., 2007, 42: 6866 | [35] | Lu B T, Chen Z K, Luo J L, et al. Pitting and stress corrosion cracking behavior in welded austenitic stainless steel [J]. Electrochim. Acta, 2005, 50: 1391 | [36] | Suter T, Webb E G, Bo?hni H, et al. Pit initiation on stainless steels in 1 M NaCl with and without mechanical stress [J]. J. Electrochem. Soc., 2001, 148: B174 | [37] | Solomon N, Solomon I. Effect of deformation-induced phase transformation on AISI 316 stainless steel corrosion resistance [J]. Eng. Fail. Anal., 2017, 79: 865 | [38] | Karthik D, Swaroop S. Influence of laser peening on phase transformation and corrosion resistance of AISI 321 steel [J]. J. Mater. Eng. Perform., 2016, 25: 2642 | [39] | Vignal V, Josse R O C. Local analysis of the mechanical behaviour of inclusions-containing stainless steels under straining conditions [J]. Scr. Mater., 2003, 49: 779 | [40] | Ren Y B, Zhao H C, Liu W P, et al. Effect of cold deformation on pitting corrosion of 00Cr18Mn15Mo2N0.86 stainless steel for coronary stent application [J]. Mater. Sci. Eng., 2016, C60: 293 | [41] | Luo K Y. Investigation of laser shock processing on corrosion properties and micro-plastic strengthening mechanism of stainless steel [D]. Zhenjiang: Jiangsu University, 2012: 120 | [41] | (罗开玉. 激光冲击不锈钢抗腐蚀性能及微观强化机理研究 [D]. 镇江: 江苏大学, 2012: 120) | [42] | Xu D M, Li G Q, Wan X L, et al. Deformation behavior of high yield strength-High ductility ultrafine-grained 316LN austenitic stainless steel [J]. Mater. Sci. Eng., 2017, A688: 407 | [43] | Beccaria A M, Poggi G, Castello G. Influence of passive film composition and sea water pressure on resistance to localised corrosion of some stainless steels in sea water [J]. Br. Corros. J., 2013, 30: 283 | [44] | Williams D E, Stewart J, Balkwill P H. The nucleation, growth and stability of micropits in stainless steel [J]. Corros. Sci., 1994, 36: 1213 | [45] | Tian W M, Du N, Li S M, et al. Metastable pitting corrosion of 304 stainless steel in 3.5%NaCl solution [J]. Corros. Sci., 2014, 85: 372 | [46] | Pistorius P C, Burstein G T. Metastable pitting corrosion of stainless steel and the transition to stability [J]. Philos. Trans.: Phys. Sci. Eng., 1992, 341: 531 | [47] | Wang H T, Han E-H. Simulation of metastable corrosion pit development under mechanical stress [J]. Electrochim. Acta, 2013, 90: 128 | [48] | Lu B T, Luo J L, Norton P R, et al. Effects of dissolved hydrogen and elastic and plastic deformation on active dissolution of pipeline steel in anaerobic groundwater of near-neutral pH [J]. Acta Mater., 2009, 57: 41 | [49] | Wang H T, Han E-H. Computational simulation of corrosion pit interactions under mechanochemical effects using a cellular automaton/finite element model [J]. Corros. Sci., 2016, 103: 305 | [50] | Guo S, Wang H T, Han E-H. Computational evaluation of the influence of various uniaxial load levels on pit growth of stainless steel under mechanoelectrochemical interactions [J]. J. Electrochem. Soc., 2018, 165: C515 | [51] | Williams D E, Westcott C, Fleischmann M. Stochastic models of pitting corrosion of stainless steels I. Modeling of the initiation and growth of pits at constant potential [J]. J. Electrochem. Soc., 1985, 132: 1796 | [52] | Williams D E, Westcott C, Fleischmann M. Stochastic models of pitting corrosion of stainless steels II. Measurement and interpretation of data at constant potential [J]. J. Electrochem. Soc., 1985, 132: 1804 | [53] | You Y H, Wang B R, Hu H Y. The stochastic model of pitting corrosion of metals [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2017, 283: 012012 | [54] | Lunt T T, Pride S T, Scully J R, et al. Cooperative stochastic behavior in localized corrosion II. Experiments [J]. J. Electrochem. Soc., 1997, 144: 1620 | [55] | Shibata T. Stochastic studies of passivity breakdown [J]. Corros. Sci., 1990, 31: 413 | [56] | Zhang T, Yan Y G, Shao Y W, et al. A stochastic analysis of the effect of hydrostatic pressure on the pit corrosion of Fe–20Cr alloy [J]. Electrochim. Acta, 2009, 54: 3915 | [57] | Yang Z X. Study of corrosion and stress corrosion cracking of X70 pipeline steel in simulated deep-sea environment [D]. Beijing: University of Science and Technology Beijing, 2017: 94 | [57] | (杨子旋. X70钢在模拟深海环境中腐蚀及应力腐蚀行为研究 [D]. 北京: 北京科技大学, 2017: 94) | [58] | Yang Z X, Kan B, Li J X, et al. A statistical study on the effect of hydrostatic pressure on metastable pitting corrosion of X70 pipeline steel [J]. Materials, 2017, 10: 1307 | [59] | Feng X G, Lu X Y, Zuo Y, et al. The effect of deformation on metastable pitting of 304 stainless steel in chloride contaminated concrete pore solution [J]. Corros. Sci., 2016, 103: 223 | [60] | Vignal V, Mary N, Valot C, et al. Influence of elastic deformation on initiation of pits on duplex stainless steels [J]. Electrochem. Solid-State Lett., 2004, 7: C39 | [61] | Oltra R, Vignal V. Recent advances in local probe techniques in corrosion research-analysis of the role of stress on pitting sensitivity [J]. Corros. Sci., 2007, 49: 158 | [62] | Guan L, Zhang B, Yong X P, et al. Effects of cyclic stress on the metastable pitting characteristic for 304 stainless steel under potentiostatic polarization [J]. Corros. Sci., 2015, 93: 80 | [63] | Guan L, Zhang B, Yong X P, et al. Quantitative understanding of the current responses under elastic cyclic loading for 304 stainless steel [J]. J. Electrochem. Soc., 2016, 163: C627 | [64] | Turnbull A, McCartney L, Zhou S. A model to predict the evolution of pitting corrosion and the pit-to-crack transition incorporating statistically distributed input parameters [J]. Corros. Sci., 2006, 48: 2084 | [65] | Navidi W, Shayer Z. An application of stochastic modeling to pitting of Spent Nuclear Fuel canisters [J]. Prog. Nucl. Energy, 2018, 107: 48 | [66] | Soltis J. Passivity breakdown, pit initiation and propagation of pits in metallic materials – Review [J]. Corros. Sci., 2015, 90: 5 | [67] | Wang C G, Wu L P, Xue F, et al. Electrochemical noise analysis on the pit corrosion susceptibility of biodegradable AZ31 magnesium alloy in four types of simulated body solutions [J]. J. Mater. Sci. Technol., 2018, 34: 1876 | [68] | Xie C Y. Research on pitting corrosion of metals with the effects of mechanical stress and structural reliability analysis method [D]. Chengdu: University of Electronic Science and Technology of China, 2017: 114 | [68] | (谢朝阳. 应力作用下金属点蚀与结构可靠性分析方法研究 [D]. 成都: 电子科技大学, 2017: 114) | [69] | Turnbull A, Wright L, Crocker L. New insight into the pit-to-crack transition from finite element analysis of the stress and strain distribution around a corrosion pit [J]. Corros. Sci., 2010, 52: 1492 | [70] | Huang Y H, Tu S T, Xuan F Z. Modeling and simulation of pit chemistry of 304 austenitic stainless steel under applied stress in sodium chloride solution [J]. Nucl. Eng. Des., 2013, 257: 45 | [71] | Shimahashi N, Muto I, Sugawara Y, et al. Effects of corrosion and cracking of sulfide inclusions on pit initiation in stainless steel [J]. J. Electrochem. Soc., 2014, 161: C494 | [72] | Almuaili F A, McDonald S A, Withers P J, et al. Strain-induced reactivation of corrosion pits in austenitic stainless steel [J]. Corros. Sci., 2017, 125: 12 | [73] | Kondo Y. Prediction of fatigue crack initiation life based on pit growth [J]. Corrosion, 1989, 45: 7 | [74] | Ishihara S, Saka S, Nan Z Y, et al. Prediction of corrosion fatigue lives of aluminium alloy on the basis of corrosion pit growth law [J]. Fatigue Fract. Eng. Mater. Struct., 2006, 29: 472 | [75] | Amiri M, Arcari A, Airoldi L, et al. A continuum damage mechanics model for pit-to-crack transition in AA2024-T3 [J]. Corros. Sci., 2015, 98: 678 | [76] | Ma J, Zhang B, Wang J Q, et al. Anisotropic 3D growth of corrosion pits initiated at MnS inclusions for A537 steel during corrosion fatigue [J]. Corros. Sci., 2010, 52: 2867 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|