|
|
超细层片结构Al-4%Cu合金的点蚀行为 |
辛叶春, 徐伟, 赵东杨, 张波( ) |
中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 |
|
Pitting Corrosion Behavior of Ultra-fine Lamellated Al-4%Cu Alloy |
XIN Yechun, XU Wei, ZHAO Dongyang, ZHANG Bo( ) |
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
辛叶春, 徐伟, 赵东杨, 张波. 超细层片结构Al-4%Cu合金的点蚀行为[J]. 中国腐蚀与防护学报, 2022, 42(2): 274-280.
Yechun XIN,
Wei XU,
Dongyang ZHAO,
Bo ZHANG.
Pitting Corrosion Behavior of Ultra-fine Lamellated Al-4%Cu Alloy. Journal of Chinese Society for Corrosion and protection, 2022, 42(2): 274-280.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2021.041
或
https://www.jcscp.org/CN/Y2022/V42/I2/274
|
1 |
Davis J R. Corrosion of Aluminum and Aluminum Alloys [M]. Ohio: ASM International, 1999
|
2 |
Wu S H, Zhang P, Shao D, et al. Grain size-dependent Sc microalloying effect on the yield strength-pitting corrosion correlation in Al-Cu alloys [J]. Mater. Sci. Eng., 2018, 721A: 200
|
3 |
Birbilis N, Buchheit R G. Electrochemical characteristics of intermetallic phases in aluminum alloys: An experimental survey and discussion [J]. J. Electrochem. Soc., 2005, 152: B140
|
4 |
Azushima A, Kopp R, Korhonen A, et al. Severe plastic deformation (SPD) processes for metals [J]. CIRP Ann., 2008, 57: 716
|
5 |
Ma K K, Wen H M, Hu T, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy [J]. Acta Mater., 2014, 62: 141
|
6 |
Hu T, Ma K, Topping T D, et al. Precipitation phenomena in an ultrafine-grained Al alloy [J]. Acta Mater., 2013, 61: 2163
|
7 |
Brunner J G, Birbilis N, Ralston K D, et al. Impact of ultrafine-grained microstructure on the corrosion of aluminium alloy AA2024 [J]. Corros. Sci., 2012, 57: 209
|
8 |
Shankar M R, Chandrasekar S, King A H, et al. Microstructure and stability of nanocrystalline aluminum 6061 created by large strain machining [J]. Acta Mater., 2005, 53: 4781
|
9 |
Tsuji N, Ito Y, Saito Y, et al. Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing [J]. Scr. Mater., 2002, 47: 893
|
10 |
Ralston K D, Birbilis N, Davies C H J. Revealing the relationship between grain size and corrosion rate of metals [J]. Scr. Mater., 2010, 63: 1201
|
11 |
Ralston K D, Birbilis N. Effect of grain size on corrosion: A review [J]. Corrosion, 2010, 66: 075005
|
12 |
Li N, Li Y, Wang S G, et al. Corrosion behavior of nanocrystallized bulk 304 stainless steel I. The research on anti-chloride ion attack of the passive film [J]. J. Chin. Soc. Corros. Prot., 2007, 27: 80
|
12 |
李楠, 李瑛, 王胜刚等. 轧制纳米块体304不锈钢腐蚀行为的研究I.钝化膜耐氯离子侵蚀能力 [J]. 中国腐蚀与防护学报, 2007, 27: 80
|
13 |
Yue L L, Ma B J. Effect of ultrasonic surface rolling process on corrosion behavior of AZ31B Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 560
|
13 |
岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 560
|
14 |
Huang Y, Robson J D, Prangnell P B. The formation of nanograin structures and accelerated room-temperature theta precipitation in a severely deformed Al-4wt.% Cu alloy [J]. Acta Mater., 2010, 58: 1643
|
15 |
Yu S R, He Y N, Li S X, et al. Effect of grain size on susceptibility to intergranular corrosion for austenitic stainless steel [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 70
|
15 |
俞树荣, 何燕妮, 李淑欣等. 晶粒尺寸对奥氏体不锈钢晶间腐蚀敏感性的影响 [J]. 中国腐蚀与防护学报, 2013, 33: 70
|
16 |
Xu W, Liu X C, Li X Y, et al. Deformation induced grain boundary segregation in nanolaminated Al-Cu alloy [J]. Acta Mater., 2020, 182: 207
|
17 |
Akiyama E, Zhang Z G, Watanabe Y, et al. Effects of severe plastic deformation on the corrosion behavior of aluminum alloys [J]. J. Solid State Electrochem., 2009, 13: 277
|
18 |
Zhang X, Yang G H, Wang Z H, et al. Corrosion behavior of Al-Mg-RE alloy wires subjected to different cold drawing deformation [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 432
|
18 |
张欣, 杨光恒, 王泽华等. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 432
|
19 |
Valiev R Z, Estrin Y, Horita Z, et al. Producing bulk ultrafine-grained materials by severe plastic deformation [J]. JOM, 2006, 58(4): 33
|
20 |
Murdoch H A, Schuh C A. Stability of binary nanocrystalline alloys against grain growth and phase separation [J]. Acta Mater., 2013, 61: 2121
|
21 |
Chookajorn T, Murdoch H A, Schuh C A. Design of stable nanocrystalline alloys [J]. Science, 2012, 337: 951
|
22 |
Hu J, Shi Y N, Sauvage X, et al. Grain boundary stability governs hardening and softening in extremely fine nanograined metals [J]. Science, 2017, 355: 1292
|
23 |
Curry J F, Babuska T F, Furnish T A, et al. Achieving ultralow wear with stable nanocrystalline metals [J]. Adv. Mater., 2018, 30: 1802026
|
24 |
Shan G B, Chen Y Z, Li Y J, et al. High temperature creep resistance of a thermally stable nanocrystalline Fe-5at.%Zr steel [J]. Scr. Mater., 2020, 179: 1
|
25 |
Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures [J]. Nat. Rev. Mater., 2016, 1: 16019
|
26 |
Hall E O. The deformation and ageing of mild steel: III discussion of results [J]. Proc. Phys. Soc., 1951, 64B: 747
|
27 |
Petch N. The cleavage strength of polycrystals [J]. J. Iron Steel Inst., 1953, 174: 25
|
28 |
Zhao H, De Geuser F, da Silva A K, et al. Segregation assisted grain boundary precipitation in a model Al-Zn-Mg-Cu alloy [J]. Acta Mater., 2018, 156: 318
|
29 |
Ralston K D, Birbilis N, Weyland M, et al. The effect of precipitate size on the yield strength-pitting corrosion correlation in Al–Cu-Mg alloys [J]. Acta Mater., 2010, 58: 5941
|
30 |
Wang J, Zhang B, Wu B, et al. Size-dependent role of S phase in pitting initiation of 2024Al alloy [J]. Corros. Sci., 2016, 105: 183
|
31 |
Zhu Y K, Poplawsky J D, Li S R, et al. Localized corrosion at nm-scale hardening precipitates in Al-Cu-Li alloys [J]. Acta Mater., 2020, 189: 204
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|