Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (4): 477-486    DOI: 10.11902/1005.4537.2020.148
  研究报告 本期目录 | 过刊浏览 |
含硫化物夹杂的铁基非晶合金点蚀规律
张浩然1, 吴鸿燕2, 王善林1(), 左瑶1, 陈玉华1, 尹立孟3
1.航空构件成形与连接江西省重点实验室 南昌 330063
2.九江职业技术学院 九江 332007
3.重庆科技学院冶金与材料工程学院 重庆 401331
Pitting Behavior of Fe-based Amorphous Alloy with Sulfide Inclusion
ZHANG Haoran1, WU Hongyan2, WANG Shanlin1(), ZUO Yao1, CHEN Yuhua1, YIN Limeng3
1.Jiangxi Key Laboratory of Forming and Joining Technology for Aviation Components, Nanchang 330063, China
2.Jiujiang Vocational and Technical College, Jiujiang 332007, China
3.School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
全文: PDF(15863 KB)   HTML
摘要: 

采用电化学工作站和透射电镜等对含硫化物夹杂的铁基非晶合金进行了电化学腐蚀行为及腐蚀形貌分析。结果表明,铁基非晶合金的含硫化物夹杂为Al2S3和Al57Mn12。在FeCl2溶液中表现出明显的钝化现象,腐蚀速率随溶液浓度的升高而升高;夹杂物周围贫Cr区的钝化膜薄弱,是点蚀萌生的位置;Al和Mn在FeCl2溶液中优先溶解使夹杂处形成蚀坑,在较高的浓度下蚀坑中会因自催化效应进一步腐蚀生成次生孔。

关键词 铁基非晶合金硫化物夹杂耐蚀性能点蚀    
Abstract

The electrochemical corrosion behavior and corrosion morphology of Fe-based amorphous alloys containing sulfide inclusion were examined by means of electrochemical workstation and transmission electron microscope. The results show that both of the sulfide inclusions Al2S3 and precipitates Al57Mn12 exist in the amorphous alloy. The corrosion rate of the amorphous alloy increases with the increase of the concentration of FeCl2 in the solution. The passivation film in the Cr-depleted zone around the inclusions is weak, which is the location of pitting initiation. Al and Mn of precipitates Al57Mn12 are preferentially dissolved in FeCl2 solution, resulting in pits initiation, however, in the solutions of higher FeCl2 concentration, secondary pores within pits could form due to the presence of autocatalytic effect.

Key wordsFe-based amorphous alloy    sulfide inclusion    corrosion resistance    pitting
收稿日期: 2020-08-12     
ZTFLH:  TG174  
基金资助:国家自然科学基金(51965044);装备部项目(41423060313);江西省研究生创新基金(YC2020-S538)
通讯作者: 王善林     E-mail: slwang70518@nchu.edu.cn
Corresponding author: WANG Shanlin     E-mail: slwang70518@nchu.edu.cn
作者简介: 张浩然,男,1997年生,硕士生

引用本文:

张浩然, 吴鸿燕, 王善林, 左瑶, 陈玉华, 尹立孟. 含硫化物夹杂的铁基非晶合金点蚀规律[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
Haoran ZHANG, Hongyan WU, Shanlin WANG, Yao ZUO, Yuhua CHEN, Limeng YIN. Pitting Behavior of Fe-based Amorphous Alloy with Sulfide Inclusion. Journal of Chinese Society for Corrosion and protection, 2021, 41(4): 477-486.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.148      或      https://www.jcscp.org/CN/Y2021/V41/I4/477

AlloyCSiBPCrMnTiAlNiCaONS
Fe-C4.280.46---0.20---0.200.03---0.09---------0.04
Fe-P0.020.01---26.28---0.690.35------0.01------0.01
Fe-B0.170.6519.750.04---0.21---0.05------0.020.01---
Fe-Cr1.430.33---0.0255.49---------------0.040.01---
Fe-S0.221.13---------------------1.29---49.7
表1  工业原材料的化学成分[10]
图1  铁基非晶铸棒微观结构分析
图2  铁基非晶合金微观SEM、TEM形貌及A区基体电子衍射图,B区夹杂物EDS分析及电子衍射图标定
图3  铁基非晶合金在不同浓度FeCl2溶液中的极化曲线
Electrolyte / mol·L-1Ecorr / mVIcorr / μA·cm-2Ipass / μA·cm-2Epassive / mVEpitting / mV
0.5-72846.7713.1816601250
1-73915.22144.541370980
2-70552.48245.47990680
4-676316.22398.1078080
表2  铁基非晶合金在不同浓度的FeCl2溶液中动电位极化实验的电化学参数
图4  铁基非晶合金在不同浓度FeCl2溶液中的腐蚀速率
图5  铁基非晶合金在不同浓度FeCl2溶液中浸泡后的腐蚀形貌
图6  在4 mol/L浓度下浸泡1 h后铁基非晶合金微观形貌分析
图7  极化实验后工作电极表面的SEM形貌
图8  含硫化物夹杂的铁基非晶合金在FeCl2溶液中的点蚀萌生和发展示意图
1 Chen H S, Formation Turnbull D., stability and structure of palladium-silicon based alloy glasses [J]. Acta Metall., 1969, 17: 1021
2 Wang Y H, Yang Y S. Amorphous Alloys [M]. Beijing: Metallurgical Press, 1989: 135
2 王一禾, 杨膺善. 非晶态合金 [M]. 北京: 冶金工业出版社, 1989: 135
3 Wang G, Xiao P, Huang Z J, et al. Microstructure and wear properties of Fe-based amorphous coatings deposited by high-velocity oxygen fuel spraying [J]. J. Iron Steel Res. Int., 2016, 23: 699
4 Li D Y, Chen X Y, Hui X D, et al. Effect of amorphicity of HVOF sprayed Fe-based coatings on their corrosion performances and contacting osteoblast behavior [J]. Surf. Coat. Technol., 2017, 310: 207
5 Wang W, Zhang C, Xu P, et al. Enhancement of oxidation and wear resistance of Fe-based amorphous coatings by surface modification of feedstock powders [J]. Mater. Des., 2015, 73: 35
6 Wang L Q, Zhai S Q, Ding R, et al. Recent development of bulk amorphous alloys [J]. Found. Technol., 2017, 38: 274
6 王立强, 翟慎秋, 丁锐等. 大块非晶合金研究进展 [J]. 铸造技术, 2017, 38: 274
7 Huang Y. Corrosion resistance and pitting initiation mechanism of Fe-based bulk metallic glass with sulfide inclusions [D]. Nanchang: Nanchang Hangkong University, 2017
7 黄勇. 含硫化物夹杂铁基块体非晶合金耐蚀性能及点蚀萌生机理 [D]. 南昌: 南昌航空大学, 2017
8 Chen Q J, Jiang W, Gao J W. Effect of relative density difference between coating and bulk on Fe-based amorphous alloys corrosion resistance [J]. Chin. J. Nonferrous Met., 2015, 25: 2414
8 陈庆军, 蒋薇, 高霁雯. 涂层与块体致密度差值对铁基非晶合金耐蚀性的影响 [J]. 中国有色金属学报, 2015, 25: 2414
9 Wang A D, Zhao C L, Men H, et al. Fe-based amorphous alloys for wide ribbon production with high Bs and outstanding amorphous forming ability [J]. J. Alloy. Compd., 2015, 630: 209
10 Wang S L, Cheng J C, Li C X, et al. Precipitation of sulfide particle in situ formed in Fe-based bulk metallic glass [J]. Foundry, 2013, 62: 491
10 王善林, 成京昌, 李承勋等. 大块铁基非晶中硫化物析出行为研究 [J]. 铸造, 2013, 62: 491
11 Gong Y B. Fabrication, anti-corrosion and wear-resistance properties of Fe-based amorphous coatings by HVOF [D]. Nanchang: Nanchang Hangkong University, 2017
11 龚玉兵. 铁基非晶涂层HVOF制备及耐蚀耐磨性能研究 [D]. 南昌: 南昌航空大学, 2017
12 Li X, Qin C L, Kato H, et al. Mo microalloying effect on the glass-forming ability, magnetic, mechanical and corrosion properties of (Fe0.76Si0.096B0.084P0.06)100-xMox bulk glassy alloys [J]. J. Alloy. Compd., 2011, 509: 7688
13 Lu Z P, Liu C T, Thompson J R, et al. Structural amorphous steels [J]. Phys. Rev. Lett., 2004, 92: 245503
14 Li H X, Lu Z P, Yi S. Estimation of the glass forming ability of the Fe-based bulk metallic glass Fe68.8C7.0Si3.5B5.0P9.6Cr2.1Mo2.0Al2.0 that contains non-metallic inclusions [J]. Met. Mater. Int., 2009, 15: 7
15 Li H X, Gao J E, Jiao Z B, et al. Glass-forming ability enhanced by proper additions of oxygen in a Fe-based bulk metallic glass [J]. Appl. Phys. Lett., 2009, 95: 161905
16 Li L, Luo X B, Chai F, et al. Effect of sulfur on pitting corrosion behavior of hull steel [J] Contin. Cast., 2017, 42(2): 7
16 李丽, 罗小兵, 柴锋等. 硫质量分数对船体钢诱发点蚀行为的影响研究 [J]. 连铸, 2017, 42(2): 7
17 Wang Y, Zheng Y G, Wang J Q, et al. Passivation behavior of Fe-based amorphous metallic coating in NaCl and H2SO4 solutions [J]. Acta Metall. Sin., 2015, 51: 49
17 王勇, 郑玉贵, 王建强等. 铁基非晶涂层在NaCl和H2SO4溶液中的钝化行为 [J]. 金属学报, 2015, 51: 49
18 Wang L, Chao Y S. Corrosion behaviors of bulk amorphous Fe41Co7Cr15Mo14C15B6Y2 alloy in NaOH solution [J]. J. Funct. Mater., 2010, 41: 1849
18 王莉, 晁月盛. 铁基块体非晶合金在NaOH溶液中的腐蚀行为 [J]. 功能材料, 2010, 41: 1849
19 Guo S F, Pan F S, Zhang H J, et al. Fe-based amorphous coating for corrosion protection of magnesium alloy [J]. Mater. Des., 2016, 108: 624
20 Guo S F, Lai L M, Ding K L, et al. Construction and corrosion behaviour of amorphous coating on magnesium alloy [J]. Surf. Technol., 2019, 48(3): 40
20 郭胜锋, 赖利民, 丁凯露等. 镁合金表面非晶涂层的构筑及其腐蚀行为 [J]. 表面技术, 2019, 48(3): 40
21 Zhang S D, Zhang W L, Wang S G, et al. Characterisation of three-dimensional porosity in an Fe-based amorphous coating and its correlation with corrosion behaviour [J]. Corros. Sci., 2015, 93: 211
22 Botta W J, Berger J E, Kiminami C S, et al. Corrosion resistance of Fe-based amorphous alloys [J]. J. Alloy. Compd., 2014, 586: S105
23 Wang Y, Luo Q, Qiao J, et al. The corrosion behavior of Fe-based amorphous alloy coating in sodium chloride solution [J]. Metall. Funct. Mater., 2015, 22(1): 1
23 王允, 罗强, 焦津等. 铁基非晶合金涂层在氯化钠溶液中的腐蚀行为研究 [J]. 金属功能材料, 2015, 22(1): 1
24 Liu G, An Y L, Guo Z H, et al. Structure and corrosion behavior of iron-based metallic glass coatings prepared by LPPS [J]. Appl. Surf. Sci., 2012, 258: 5380
25 Naka M, Hashimoto K, Masumoto T. Corrosion resistivity of amorphous iron alloys containing chromium [J]. J. Japan Inst. Met., 2004, 38: 835
26 Zhang C, Chan K C, Wu Y, et al. Pitting initiation in Fe-based amorphous coatings [J]. Acta Mater., 2012, 60: 4152
27 Meng Q G, Li J G, Tan N. Effect of PH on corrosion behaviors of Pr60Fe30Al10 BMG and ITS crystalline couterpart in NaCl solution [J]. Rare Met. Mater. Eng., 2007, 36: 71
27 孟庆格, 李建国, 谭宁. pH值对块体非晶Pr60Fe30Al10在NaCl溶液中的腐蚀行为影响 [J]. 稀有金属材料与工程, 2007, 36: 71
28 Li Z, Zhang C, Liu L. Wear behavior and corrosion properties of Fe-based thin film metallic glasses [J]. J. Alloy. Compd., 2015, 650: 127
29 Qin H P, Chen H T, Lang Y P, et al. Mechanism of induced pitting corrosion in 439M ferritic stainless steel [J]. Iron Steel, 2015, 50(9): 81
29 覃怀鹏, 陈海涛, 郎宇平等. 439M铁素体不锈钢点蚀诱发机理 [J]. 钢铁, 2015, 50(9): 81
30 Zhang C Y, Zhang Q, Li J G, et al. Micro-corrosion test research on pitting initiation site of the inclusions of carbon steel and low alloy steel in chlorine ion solution [J]. Metall. Anal., 2014, 34(1): 22
30 张春亚, 张奇, 李继高等. 碳钢及低合金钢在氯离子溶液中夹杂物诱发点蚀位置显微腐蚀实验探讨 [J]. 冶金分析, 2014, 34(1): 22
31 Wang Y, Li M Y, Zhu F, et al. Pitting corrosion mechanism of Cl- and S2- induced by oxide inclusions in Fe-based amorphous metallic coatings [J]. Surf. Coat. Technol., 2020, 385: 125449
32 Rossi A, Elsener B, Hähner G, et al. XPS, AES and ToF-SIMS investigation of surface films and the role of inclusions on pitting corrosion in austenitic stainless steels [J]. Surf. Interface Anal., 2000, 29: 460
33 Wu H B, Wang D, Liang J M, et al. Influence of inclusion on pitting corrosion behavior of low-alloy steel for bottom plates of cargo oil tanks [J]. Trans. Mater. Heat Treat., 2014, 35(12): 172
33 武会宾, 王迪, 梁金明等. 夹杂物对低合金钢在酸性Cl-溶液环境中点蚀行为的影响 [J]. 材料热处理学报, 2014, 35(12): 172
34 Barin I. Thermochemical Data of Pure Substances [M]. Beijing: Science Press, 2003: 1055
34 Barin I. 纯物质热化学数据手册 [M]. 北京: 科学出版社, 2003: 1055
35 Zhao D G, Guo P M, Zhao P. Estimating model of standard enthalpy of intermetallics [J]. J. Central South Univ. (Sci. Technol.), 2011, 42: 1578
35 赵定国, 郭培民, 赵沛. 金属间化合物的标准生成焓估算模型 [J]. 中南大学学报 (自然科学版), 2011, 42: 1578
36 Hu Z L. The formation and mechanical properties of icosahedral quasicrystal in rapidly solidified Al-Mn-(Be) alloy [D]. Harbin: Harbin Institute of Technology, 2013
36 胡仲略. 快速凝固Al-Mn- (Be) 合金准晶形成及力学性能 [D]. 哈尔滨: 哈尔滨工业大学, 2013
37 Burstein G T, Liu C, Souto R M, et al. Origins of pitting corrosion [J]. Corros. Eng. Sci. Technol., 2004, 39: 25
38 Zhang S D, Wang Z M, Chang X C, et al. Identifying the role of nanoscale heterogeneities in pitting behaviour of Al-based metallic glass [J]. Corros. Sci., 2011, 53: 3007
39 Zhao Y, Zhou E Z, Liu Y Z, et al. Comparison of different electrochemical techniques for continuous monitoring of the microbiologically influenced corrosion of 2205 duplex stainless steel by marine Pseudomonas aeruginosa biofilm [J]. Corros. Sci., 2017, 126: 142
40 Jiang N. Beam damage by the induced electric field in transmission electron microscopy [J]. Micron, 2016, 83: 79
41 Zhang H R, Egerton R, Malac M. Electron irradiation damage and color centers of MgO nanocube [J]. Nucl. Instrum. Methods Phys. Res., 2013, 316B: 137
42 Li H X, Xu F G, Wang S L, et al. Effect of molybdenum on electrochemical properties of bulk metallic glass Fe71.2-xC7.0Si3.3B5.5P8.7Cr2.3Al2.0Mox [J]. Foundry, 2010, 59: 145
42 李宏祥, 许凤光, 王善林等. Mo对铁基块体非晶合金Fe71.2-xC7.0Si3.3B5.5P8.7Cr2.3Al2.0Mox腐蚀性能的影响 [J]. 铸造, 2010, 59: 145
43 Guo S F, Chan K C, Xie S H, et al. Novel centimeter-sized Fe-based bulk metallic glass with high corrosion resistance in simulated acid rain and seawater [J]. J. Non-Cryst. Solids, 2013, 369: 29
44 Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd Ed. Beijing: Chemical Industry Press, 2008: 165
44 曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社, 2008: 165
45 Li Y, Lin H C, Cao C N. Corrosion interface morphology and fractal analysis of amorphous alloys in air [J]. J. Chin. Soc. Corros. Prot., 1998, 18: 257
45 李瑛, 林海潮, 曹楚南. 自然大气中非晶合金腐蚀界面的微观形貌特征与分维数分析 [J]. 中国腐蚀与防护学报, 1998, 18: 257
46 Ernst P, Laycock N J, Moayed M H, et al. The mechanism of lacy cover formation in pitting [J]. Corros. Sci., 1997, 39: 1133
47 Wang Y, Jiang S L, Zheng Y G, et al. Effect of processing parameters on the microstructures and corrosion behaviour of high-velocity oxy-fuel (HVOF) sprayed Fe-based amorphous metallic coatings [J]. Mater. Corros., 2013, 64: 801
48 Zhou Z, Wang L, He D Y, et al. Microstructure and wear resistance of Fe-based amorphous metallic coatings prepared by HVOF thermal spraying [J]. J. Therm. Spray Technol., 2010, 19: 1287
[1] 崔浩燃, 梁平, 史艳华, 杨众魁, 韩利. 脱硝剂浓度对S2205不锈钢耐蚀性及其临界点蚀温度的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 529-534.
[2] 杨众魁, 史艳华, 乔忠立, 梁平, 王玲. ClO2-对S2205不锈钢在Cl-介质中点蚀初期行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 523-528.
[3] 战栋栋, 王成, 钱吉裕, 王文, 周仝, 朱圣龙, 王福会. 痕量Cl-和Cu2+对3A21铝合金在乙二醇冷却液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 383-388.
[4] 刘欣怡, 赵亚州, 张欢, 陈莉. 混凝土孔隙液中Cl-浓度对304不锈钢亚稳态点蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[5] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[6] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[7] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[8] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[9] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[10] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[11] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[12] 贺三, 孙银娟, 张志浩, 成杰, 邱云鹏, 高超洋. 20#钢在含饱和CO2的离子液体醇胺溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[13] 李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[14] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[15] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.