|
|
液态金属储能电池中常用液态金属腐蚀研究进展 |
刘威1,2, 杜开发1,2, 胡晓宏3, 汪的华1,2( ) |
1 武汉大学资源与环境科学学院 武汉 430072 2 湖北省资源与能源可持续利用技术示范型国际科技合作基地 武汉 430072 3 武汉大学化学与分子科学学院 武汉 430072 |
|
Review on Research Status of Common Liquid Metal Corrosion in Liquid Metal Energy Storage Batteries |
LIU Wei1,2, DU Kaifa1,2, HU Xiaohong3, WANG Dihua1,2( ) |
1 School of Resource and Environmental Science, Wuhan University,Wuhan 430072, China 2 International Cooperation Base for Sustainable Utilization of Resources and Energy in Hubei Province, Wuhan 430072, China 3 College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, China |
引用本文:
刘威, 杜开发, 胡晓宏, 汪的华. 液态金属储能电池中常用液态金属腐蚀研究进展[J]. 中国腐蚀与防护学报, 2020, 40(2): 81-86.
Wei LIU,
Kaifa DU,
Xiaohong HU,
Dihua WANG.
Review on Research Status of Common Liquid Metal Corrosion in Liquid Metal Energy Storage Batteries. Journal of Chinese Society for Corrosion and protection, 2020, 40(2): 81-86.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2019.018
或
https://www.jcscp.org/CN/Y2020/V40/I2/81
|
[1] |
Bradwell D J, Kim H, Sirk A H C, et al. Magnesium-antimony liquid metal battery for stationary energy storage [J]. J. Am. Chem. Soc., 2012, 134: 1895
|
[2] |
Ning X N, Phadke S, Chung B, et al. Self-healing Li-Bi liquid metal battery for grid-scale energy storage [J]. J. Power Sources, 2015, 275: 370
|
[3] |
Bradwell D J, Kim H, Sirk A H C, et al. Magnesium-antimony liquid metal battery for stationary energy storage [J]. J. Am. Chem. Soc., 2012, 134: 1895
|
[4] |
Wang K Q, Jiang K, Chung B, et al. Lithium-antimony-lead liquid metal battery for grid-level energy storage [J]. Nature, 2014, 514: 348
|
[5] |
Li H M, Wang K L, Cheng S J, et al. High performance liquid metal battery with environmentally friendly antimony-tin positive electrode [J]. ACS Appl. Mater. Interfaces, 2016, 8: 12830
|
[6] |
Liu S X, Li P J, Zeng D B. Research progress of liquid metal induced corrosion [J]. Corros. Sci. Prot. Technol., 2001, 13: 275
|
[6] |
(刘树勋, 李培杰, 曾大本. 液态金属腐蚀的研究进展 [J]. 腐蚀科学与防护技术, 2001, 13: 275)
|
[7] |
Wang M Y, Wang H, Zhang K. Research on corrosion and protection technology of liquid metal [J]. Adv. Mater. Ind., 2015, (11): 60
|
[7] |
(王梦雨, 王辉, 张康. 液态金属腐蚀与防护技术研究 [J]. 新材料产业, 2015, (11): 60)
|
[8] |
Benamati G, Buttol P, Imbeni V, et al. Behaviour of materials for accelerator driven systems in stagnant molten lead [J]. J. Nucl. Mater., 2000, 279: 308
|
[9] |
Zhu Q, Chen Z X, Li W W. Corrosion of lithium to materials and choice of boiler reactor structure material [J] Chem. Defence Ships, 2011, (4): 16
|
[9] |
(朱强, 陈支厦, 李维维. 锂对材料的腐蚀及锅炉反应器结构材料的选择 [J]. 舰船防化, 2011, (4): 16)
|
[10] |
Ouchi T, Sadoway D R. Positive current collector for Li||Sb-Pb liquid metal battery [J]. J. Power Sources, 2017, 357: 158
|
[11] |
Zhang J S. A review of steel corrosion by liquid lead and lead-bismuth [J]. Corros. Sci., 2009, 51: 1207
|
[12] |
Park J J, Butt D P, Beard C A. Review of liquid metal corrosion issues for potential containment materials for liquid lead and lead-bismuth eutectic spallation targets as a neutron source [J]. Nucl. Eng. Des., 2000, 196: 315
|
[13] |
Tsisar V, Kondo M, Xu Q, et al. Effect of nitrogen on the corrosion behavior of RAFM JLF-1 steel in lithium [J]. J. Nucl. Mater., 2011, 417: 1205
|
[14] |
Fazio C, Benamati G, Martini C, et al. Compatibility tests on steels in molten lead and lead-bismuth [J]. J. Nucl. Mater., 2001, 296: 243
|
[15] |
Tortorelli P F, Chopra O K. Corrosion and compatibility considerations of liquid metals for fusion reactor applications [J]. J. Nucl. Mater., 1981, 103: 621
|
[16] |
Meng X C, Zuo G Z, Ren J, et al. Study of the corrosion behaviors of 304 austenite stainless steel specimens exposed to static liquid lithium at 600 K [J]. J. Nucl. Mater., 2016, 480: 25
|
[17] |
Tsisar V, Kondo M, Muroga T, et al. Structural and compositional transformations in the near-surface layers of Fe-Cr based steels exposed to lithium-Effect of alloying and corrosion-assisted substructure coarsening [J]. Corros. Sci., 2011, 53: 441
|
[18] |
Chopra O K, Smith D L. Influence of temperature and lithium purity on corrosion of ferrous alloys in a flowing lithium environment [J]. J. Nucl. Mater., 1986, 141-143: 584
|
[19] |
Qian J P, Chen J M, Chen J B, et al. Corrosion of austenitic stainless steel in liquid lithium [J]. J. Nucl. Mater., 1991, 179-181: 603
|
[20] |
Jiang K, Li C H, Wang K L, et al. Corrosion-resistant sealed insulation device and well high temperature energy storage battery [P]. Chin Pat, 205960043U, 2017
|
[20] |
(蒋凯, 黎朝晖, 王康丽等. 耐腐蚀密封绝缘装置及中高温储能电池 [P]. 中国专利, 205960043U, 2017)
|
[21] |
Guo Z H, Huang Q Y, Yan Z L, et al. Compatibility of atmospheric plasma sprayed Al2O3 coatings on CLAM with liquid LiPb [J]. Fusion Eng. Des., 2010, 85: 1469
|
[22] |
Pint B A, More K L. Transformation of Al2O3 to LiAlO2 in Pb-17Li at 800 ℃ [J]. J. Nucl. Mater., 2008, 376: 108
|
[23] |
Nagura M, Suzuki A, Terai T. Corrosion prevention of Er2O3 by O control in Li [J]. J. Nucl. Mater., 2011, 417: 1210
|
[24] |
Mustari A P A, Takahashi M. Metallurgical analysis of corroded bellows of bellow-sealed valve in lithium flow system [J]. Fus. Eng. Des., 2013, 88: 202
|
[25] |
Meng X C, Zuo G Z, Xu W, et al. Effect of temperature on the corrosion behaviors of 304 stainless steel in static liquid lithium [J]. Nucl. Eng. Des., 2018, 128: 75
|
[26] |
Kondo M, Muroga T, Nagasaka T, et al. Mass transfer of RAFM steel in Li by simple immersion, impeller induced flow and thermal convection [J]. J. Nucl. Mater., 2011, 417: 1200
|
[27] |
Furukawa T, Hirakawa Y, Kato S. Corrosion of austenitic steel in leakage lithium [J]. Fus. Eng. Des., 2013, 88: 2502
|
[28] |
Shu L, Cao Z, Xia W X, et al. Corrosion behavior of 316L stainless steel in stagnating liquid lithium [J]. Nucl. Fusion Plasma Phys., 2017, 37: 336
|
[28] |
(舒磊, 曹智, 夏文星等. 316L不锈钢在静态液态锂中的腐蚀行为研究 [J]. 核聚变与等离子体物理, 2017, 37: 336)
|
[29] |
Horsley G W, Maskrey J T. The corrosion of 2.25Cr-1Mo steel by liquid bismuth [J]. J. Iron Steel Inst., 1958, 189: 139
|
[30] |
Deville R E, Foley W R. Liquid metal fuel reactor experiment; Liquid bismuth dynamic corrosion tests [R]. Alliance, Ohio: Babcock and Wilcox Co. Research Center, 1960
|
[31] |
Dawe D W, Parry G W, Wilson G W. A study of the compatibility of some creep-resistant steels with liquid bismuth in nonisothermal systems [J]. J. Brit. Nuclear Energy Conf., 1960, 5: 24
|
[32] |
James J A, Trotman J. Corrosion of steels in liquid bismuth and lead [J]. J. Iron Steel Inst., 1960, 3: 319
|
[33] |
Yunoshin I Y I, Nishino K. Corrosion of carbon steel by liquid bismuth [R]. Science Reports of the Research Institutes,University Tohoku. Ser. A, Physics, chemistry and metallurgy, 1963, 15: 186
|
[34] |
Poizeau S, Kim H, Newhouse J M, et al. Determination and modeling of the thermodynamic properties of liquid calcium-antimony alloys [J]. Electrochim. Acta, 2012, 76: 8
|
[35] |
Matej J, Hulínský V. Corrosion of molybdenum by molten antimony [A]. In: Bishay A. Recent Advances in Science and Technology of Materials [M]. Boston, MA: Springer, 1974: 339
|
[36] |
Li H M. Study on energy storage materials and technologies based on molten salt electrochemistry [D]. Wuhan: Huazhong University of Science & Technology, 2016
|
[36] |
(李浩秒. 基于熔盐电化学的新型储能材料与技术研究 [D]. 武汉: 华中科技大学, 2016)
|
[37] |
Müller G, Schumacher G, Zimmermann F. Investigation on oxygen controlled liquid lead corrosion of surface treated steels [J]. J. Nucl. Mater., 2000, 278: 85
|
[38] |
Tsipas D N, Triantafyllidis G K, Kiplagat J K, et al. Degradation behaviour of boronized carbon and high alloy steels in molten aluminium and zinc [J]. Mater. Lett., 1998, 37: 128
|
[39] |
Weeks J R, Klamut C J. Reactions between steel surfaces and zirconium in liquid bismuth [J]. Nucl. Sci. Eng., 1960, 8: 133
|
[40] |
Ilinčev G. Research results on the corrosion effects of liquid heavy metals Pb, Bi and Pb-Bi on structural materials with and without corrosion inhibitors [J]. Nucl. Eng. Des., 2002, 217: 167
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|