Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (2): 81-86    DOI: 10.11902/1005.4537.2019.018
  综合评述 本期目录 | 过刊浏览 |
液态金属储能电池中常用液态金属腐蚀研究进展
刘威1,2, 杜开发1,2, 胡晓宏3, 汪的华1,2()
1 武汉大学资源与环境科学学院 武汉 430072
2 湖北省资源与能源可持续利用技术示范型国际科技合作基地 武汉 430072
3 武汉大学化学与分子科学学院 武汉 430072
Review on Research Status of Common Liquid Metal Corrosion in Liquid Metal Energy Storage Batteries
LIU Wei1,2, DU Kaifa1,2, HU Xiaohong3, WANG Dihua1,2()
1 School of Resource and Environmental Science, Wuhan University,Wuhan 430072, China
2 International Cooperation Base for Sustainable Utilization of Resources and Energy in Hubei Province, Wuhan 430072, China
3 College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, China
全文: PDF(588 KB)   HTML
摘要: 

简要综述了液态金属储能电池中常用负极材料Li、正极材料Bi和Sb对与其接触的金属材料的腐蚀研究进展。根据近年来原子能反应堆以及液态金属储能电池等领域的液态金属腐蚀的研究成果,总结了金属材料在液态Li、Bi以及Sb中的腐蚀现象、腐蚀机理以及腐蚀影响因素,并提出了液态金属腐蚀的防护建议。

关键词 液态金属电池液态电极腐蚀防护    
Abstract

The research progress of the corrosion of structural metal-materials in liquid metals, such as Bi and Sb, the positive electrode materials and Li, the negative electrode material used for the liquid metal energy storage battery is briefly reviewed, while the research results of liquid metal corrosion in the field of atomic energy reactors in recent years were also taken into account. Issues related with this topic, including the corrosion phenomena, corrosion mechanism and corrosion influencing factors of metal materials in liquid Li, Bi and Sb are summarized, and finally proposals to prevent corrosion of liquid metal are put forward.

Key wordsliquid metal battery    liquid electrode    corrosion    protection
收稿日期: 2019-01-22     
ZTFLH:  TM912  
基金资助:国家重点研发计划(2018YFB0905600)
通讯作者: 汪的华     E-mail: wangdh@whu.edu.cn
Corresponding author: WANG Dihua     E-mail: wangdh@whu.edu.cn
作者简介: 刘威,男,1992年生,博士生

引用本文:

刘威, 杜开发, 胡晓宏, 汪的华. 液态金属储能电池中常用液态金属腐蚀研究进展[J]. 中国腐蚀与防护学报, 2020, 40(2): 81-86.
Wei LIU, Kaifa DU, Xiaohong HU, Dihua WANG. Review on Research Status of Common Liquid Metal Corrosion in Liquid Metal Energy Storage Batteries. Journal of Chinese Society for Corrosion and protection, 2020, 40(2): 81-86.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.018      或      https://www.jcscp.org/CN/Y2020/V40/I2/81

[1] Bradwell D J, Kim H, Sirk A H C, et al. Magnesium-antimony liquid metal battery for stationary energy storage [J]. J. Am. Chem. Soc., 2012, 134: 1895
[2] Ning X N, Phadke S, Chung B, et al. Self-healing Li-Bi liquid metal battery for grid-scale energy storage [J]. J. Power Sources, 2015, 275: 370
[3] Bradwell D J, Kim H, Sirk A H C, et al. Magnesium-antimony liquid metal battery for stationary energy storage [J]. J. Am. Chem. Soc., 2012, 134: 1895
[4] Wang K Q, Jiang K, Chung B, et al. Lithium-antimony-lead liquid metal battery for grid-level energy storage [J]. Nature, 2014, 514: 348
[5] Li H M, Wang K L, Cheng S J, et al. High performance liquid metal battery with environmentally friendly antimony-tin positive electrode [J]. ACS Appl. Mater. Interfaces, 2016, 8: 12830
[6] Liu S X, Li P J, Zeng D B. Research progress of liquid metal induced corrosion [J]. Corros. Sci. Prot. Technol., 2001, 13: 275
[6] (刘树勋, 李培杰, 曾大本. 液态金属腐蚀的研究进展 [J]. 腐蚀科学与防护技术, 2001, 13: 275)
[7] Wang M Y, Wang H, Zhang K. Research on corrosion and protection technology of liquid metal [J]. Adv. Mater. Ind., 2015, (11): 60
[7] (王梦雨, 王辉, 张康. 液态金属腐蚀与防护技术研究 [J]. 新材料产业, 2015, (11): 60)
[8] Benamati G, Buttol P, Imbeni V, et al. Behaviour of materials for accelerator driven systems in stagnant molten lead [J]. J. Nucl. Mater., 2000, 279: 308
[9] Zhu Q, Chen Z X, Li W W. Corrosion of lithium to materials and choice of boiler reactor structure material [J] Chem. Defence Ships, 2011, (4): 16
[9] (朱强, 陈支厦, 李维维. 锂对材料的腐蚀及锅炉反应器结构材料的选择 [J]. 舰船防化, 2011, (4): 16)
[10] Ouchi T, Sadoway D R. Positive current collector for Li||Sb-Pb liquid metal battery [J]. J. Power Sources, 2017, 357: 158
[11] Zhang J S. A review of steel corrosion by liquid lead and lead-bismuth [J]. Corros. Sci., 2009, 51: 1207
[12] Park J J, Butt D P, Beard C A. Review of liquid metal corrosion issues for potential containment materials for liquid lead and lead-bismuth eutectic spallation targets as a neutron source [J]. Nucl. Eng. Des., 2000, 196: 315
[13] Tsisar V, Kondo M, Xu Q, et al. Effect of nitrogen on the corrosion behavior of RAFM JLF-1 steel in lithium [J]. J. Nucl. Mater., 2011, 417: 1205
[14] Fazio C, Benamati G, Martini C, et al. Compatibility tests on steels in molten lead and lead-bismuth [J]. J. Nucl. Mater., 2001, 296: 243
[15] Tortorelli P F, Chopra O K. Corrosion and compatibility considerations of liquid metals for fusion reactor applications [J]. J. Nucl. Mater., 1981, 103: 621
[16] Meng X C, Zuo G Z, Ren J, et al. Study of the corrosion behaviors of 304 austenite stainless steel specimens exposed to static liquid lithium at 600 K [J]. J. Nucl. Mater., 2016, 480: 25
[17] Tsisar V, Kondo M, Muroga T, et al. Structural and compositional transformations in the near-surface layers of Fe-Cr based steels exposed to lithium-Effect of alloying and corrosion-assisted substructure coarsening [J]. Corros. Sci., 2011, 53: 441
[18] Chopra O K, Smith D L. Influence of temperature and lithium purity on corrosion of ferrous alloys in a flowing lithium environment [J]. J. Nucl. Mater., 1986, 141-143: 584
[19] Qian J P, Chen J M, Chen J B, et al. Corrosion of austenitic stainless steel in liquid lithium [J]. J. Nucl. Mater., 1991, 179-181: 603
[20] Jiang K, Li C H, Wang K L, et al. Corrosion-resistant sealed insulation device and well high temperature energy storage battery [P]. Chin Pat, 205960043U, 2017
[20] (蒋凯, 黎朝晖, 王康丽等. 耐腐蚀密封绝缘装置及中高温储能电池 [P]. 中国专利, 205960043U, 2017)
[21] Guo Z H, Huang Q Y, Yan Z L, et al. Compatibility of atmospheric plasma sprayed Al2O3 coatings on CLAM with liquid LiPb [J]. Fusion Eng. Des., 2010, 85: 1469
[22] Pint B A, More K L. Transformation of Al2O3 to LiAlO2 in Pb-17Li at 800 ℃ [J]. J. Nucl. Mater., 2008, 376: 108
[23] Nagura M, Suzuki A, Terai T. Corrosion prevention of Er2O3 by O control in Li [J]. J. Nucl. Mater., 2011, 417: 1210
[24] Mustari A P A, Takahashi M. Metallurgical analysis of corroded bellows of bellow-sealed valve in lithium flow system [J]. Fus. Eng. Des., 2013, 88: 202
[25] Meng X C, Zuo G Z, Xu W, et al. Effect of temperature on the corrosion behaviors of 304 stainless steel in static liquid lithium [J]. Nucl. Eng. Des., 2018, 128: 75
[26] Kondo M, Muroga T, Nagasaka T, et al. Mass transfer of RAFM steel in Li by simple immersion, impeller induced flow and thermal convection [J]. J. Nucl. Mater., 2011, 417: 1200
[27] Furukawa T, Hirakawa Y, Kato S. Corrosion of austenitic steel in leakage lithium [J]. Fus. Eng. Des., 2013, 88: 2502
[28] Shu L, Cao Z, Xia W X, et al. Corrosion behavior of 316L stainless steel in stagnating liquid lithium [J]. Nucl. Fusion Plasma Phys., 2017, 37: 336
[28] (舒磊, 曹智, 夏文星等. 316L不锈钢在静态液态锂中的腐蚀行为研究 [J]. 核聚变与等离子体物理, 2017, 37: 336)
[29] Horsley G W, Maskrey J T. The corrosion of 2.25Cr-1Mo steel by liquid bismuth [J]. J. Iron Steel Inst., 1958, 189: 139
[30] Deville R E, Foley W R. Liquid metal fuel reactor experiment; Liquid bismuth dynamic corrosion tests [R]. Alliance, Ohio: Babcock and Wilcox Co. Research Center, 1960
[31] Dawe D W, Parry G W, Wilson G W. A study of the compatibility of some creep-resistant steels with liquid bismuth in nonisothermal systems [J]. J. Brit. Nuclear Energy Conf., 1960, 5: 24
[32] James J A, Trotman J. Corrosion of steels in liquid bismuth and lead [J]. J. Iron Steel Inst., 1960, 3: 319
[33] Yunoshin I Y I, Nishino K. Corrosion of carbon steel by liquid bismuth [R]. Science Reports of the Research Institutes,University Tohoku. Ser. A, Physics, chemistry and metallurgy, 1963, 15: 186
[34] Poizeau S, Kim H, Newhouse J M, et al. Determination and modeling of the thermodynamic properties of liquid calcium-antimony alloys [J]. Electrochim. Acta, 2012, 76: 8
[35] Matej J, Hulínský V. Corrosion of molybdenum by molten antimony [A]. In: Bishay A. Recent Advances in Science and Technology of Materials [M]. Boston, MA: Springer, 1974: 339
[36] Li H M. Study on energy storage materials and technologies based on molten salt electrochemistry [D]. Wuhan: Huazhong University of Science & Technology, 2016
[36] (李浩秒. 基于熔盐电化学的新型储能材料与技术研究 [D]. 武汉: 华中科技大学, 2016)
[37] Müller G, Schumacher G, Zimmermann F. Investigation on oxygen controlled liquid lead corrosion of surface treated steels [J]. J. Nucl. Mater., 2000, 278: 85
[38] Tsipas D N, Triantafyllidis G K, Kiplagat J K, et al. Degradation behaviour of boronized carbon and high alloy steels in molten aluminium and zinc [J]. Mater. Lett., 1998, 37: 128
[39] Weeks J R, Klamut C J. Reactions between steel surfaces and zirconium in liquid bismuth [J]. Nucl. Sci. Eng., 1960, 8: 133
[40] Ilinčev G. Research results on the corrosion effects of liquid heavy metals Pb, Bi and Pb-Bi on structural materials with and without corrosion inhibitors [J]. Nucl. Eng. Des., 2002, 217: 167
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[4] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[5] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[6] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[7] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[8] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[9] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[10] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[11] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[12] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[13] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[14] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[15] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.