Please wait a minute...
中国腐蚀与防护学报  2000, Vol. 20 Issue (4): 237-242     
  研究报告 本期目录 | 过刊浏览 |
316L不锈钢在NaCl溶液微动过程中局部腐蚀作用研究
闫建中;吴荫顺;张琳
北京科技大学腐蚀与防护中心 腐蚀、磨蚀与表面技术开放研究实验室
THE EFFECT OF LOCALIZED CORROSION ON FRETTINGATTACK OF 316l STAINLESS STEEL IN 0.9%NaCl SOLUTION
Jianzhong Yan;;
北京科技大学腐蚀与防护中心 腐蚀、磨蚀与表面技术开放研究实验室
全文: PDF(218 KB)  
摘要: 采用球-平面接触微动磨损设备,对轧制固溶316L不锈钢在0.9%NaCl溶液微动过程中局部腐蚀的作用进行了研究.结果表明微动是使不锈钢发生腐蚀的主导因素.开路状态下,316L不锈饮在微动过程中发生严重缝隙腐蚀,金属离子在微动区外发生氧化反应,生成碱性氢氧化物沉淀,加剧了微动区中心的贫氧特征,并改变了材料表面钝化膜与基体间的应力状态,使用权材料表面氧化膜发生局部损伤,成为主导微动损伤扩展的主要因素之一.在强阳极极化态下,微动区边缘磨屑诱发点蚀,促进了微动损伤区的扩展过程,才增大了不锈钢的微动失重.
关键词 微动缝隙腐蚀点蚀316L不锈钢0.9%NaCl溶    
Abstract:The effect of localized corrosion,such as crevice corrosion and potting on fretting attack of solution annealed 316L stainless steel in saline solution, has been studied with ball-plane contacted fretting test system.The results suggested that fretting induced remarkable corrosion,and the combination of fretting and crevice-like cindition made the material suffer severe corrosion damage.The oxidation of the fretting corrosion product resulted in alkaline deposit on the surface outside of the fretted center,which would play an important role in the fretting process.Debris could play some apparent role on the damage when fretting carried on under high anodic polarization condition.The concentration of debris on the edge of fretting area might accelerate the occurrence of pitting ,which made great contribution to the damage and the expansion of fretting scars.
Key wordsfretting    crevice corrosion    pitting    316Lstainless steel    0.9%NaCl solution
收稿日期: 1999-08-16     
ZTFLH:  TG113.2  
通讯作者: 闫建中   
Corresponding author: Jianzhong Yan   

引用本文:

闫建中; 吴荫顺; 张琳 . 316L不锈钢在NaCl溶液微动过程中局部腐蚀作用研究[J]. 中国腐蚀与防护学报, 2000, 20(4): 237-242 .
Jianzhong Yan. THE EFFECT OF LOCALIZED CORROSION ON FRETTINGATTACK OF 316l STAINLESS STEEL IN 0.9%NaCl SOLUTION. J Chin Soc Corr Pro, 2000, 20(4): 237-242 .

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2000/V20/I4/237

[1] Waterhouse R B. Fretting Corrosion[M]. New York:Pergamon Press, 1972
[2] Waterhouse R B. Fretting Fatigue[M]. London:Appl. Sci. Publ. LTD, 1981
[3]李诗卓,董祥林.材料的冲蚀磨损与激动磨损[M].北京:机械工业出版社,1987
[4]李京紫.激动磨损与防护技术[M].西安:陕西科学技术出版社,1992
[5] Silva R, Barbosa M A, Rondet B, et al. Impedance and photoelectrochemical measurement on passive films formed on metallicbiomaterials[J]. Br. Corros. J., 1990, 25(2): 136
[6] Lewis G, Daigle K. Electrochemical behavior of Ti-6Al-4V alley in static biosimulating solutions[J]. J. of Applied Biomaterials, 1993,4:47
[7] Brown S A. Simpson J P. Biomed J. Crevice and fretting corrosion of stainless-less plate and screws[J]. J. Biomed. Mater. Res., 1981,(15):867
[8] Prabhat Kamar. Anthony J Hick, Asphahani A I, et al. Properties and characteristics of cast, wrought, and powder metallurgy(P/M)processed cobalt-chromium-molybdenum materials[A]. In: Fraker A C, Griffin C D, eds. Corrosion and Degradation of ImplantMaterials, ASTM STP859[C]. Philadelphia. 1985. 30
[9] Brown S A,Meritt K. Fretting Corrosion in saline and serum[J] .J. Biomed.Mater. Res., 1981, (15):479
[10] John P Sheehan,Charles R Morin, Kenneth F. Packer. Study of stress corrosion cracking susceptibility of type 316L stainless steel invitro[A]. In: Fraker A C, Griffin C D, eds. Corrosion and Degradation of Implant materials, ASIM SIP859[C], Philadelphia. 1985. 57
[11] Taira M, Lautenschlager E P. In vitro corrosion fatigue of 316L cold worked stainless steel[J] .J. Biomed. Mater. Res., 1992, (26):1171
[12] Mevellec C, Burleigh T D, Shanbhag A S. Corrsion in modular femoral hip prostheses: A study of 22 retrieved implants[A]. Southern,Biomedical Engineering Conference Proceedings IEEE[C], Piscataway, NJ, USA, 96TH8154, 1996. 3
[13] Musolino M C,Pettit F S,Burleigh TD, et al. Analysis of corrosion in sstainless steel total hip prostheses[A]. Southern BiomedicalEngineering Conference-Proceedings IEEE[C]. Piscataway, NJ, USA 96TH8154. 1996. 5
[14] Brown S A, Simpson J P. Grevice and freetig corrosion of stainless-steel plate and screws[J]. J. Biomed.Mater. Res., 1981, (15):867
[15] Suh, N P.The delamination theory of wear[J] .Wear. 1973, (25): 111
[16] Sproles E S, Gaul D J, Duquette D J., Fundamentals of Tribology[M]. Eds.Suh N P, Sake N, MIT. 1980.585
[17] Stowers I F, Rabinowica, E. Spherical particles formed in the fretting of silver[J] .J.Appl.Phys., 1972, (43):2485
[18] Hurricks P L.The occurrence of spherical particles in fretting wear[J]. Wear, 1974, (27):319
[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[3] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[4] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[5] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[6] 贺三, 孙银娟, 张志浩, 成杰, 邱云鹏, 高超洋. 20#钢在含饱和CO2的离子液体醇胺溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[7] 赵柏杰, 范益, 李镇镇, 张博威, 程学群. 不同类型接触面对316L不锈钢缝隙腐蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[8] 李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[9] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[10] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[11] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[12] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[13] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[14] 王标,杜楠,张浩,王帅星,赵晴. 304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用[J]. 中国腐蚀与防护学报, 2019, 39(4): 338-344.
[15] 李雨,关蕾,王冠,张波,柯伟. 机械应力对不锈钢点蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.