Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (1): 70-74    DOI: 10.11902/1005.4537.2019.225
  研究报告 本期目录 | 过刊浏览 |
W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究
苏小红,胡会娥(),孔小东
海军工程大学基础部 武汉 430033
Corrosion Behavior of W Particles/Zr41.2Ti13.8Cu12.5Ni10Be22.5 Metallic Glass Matrix Composite in 3%NaCl Solution
SU Xiaohong,HU Huie(),KONG Xiaodong
Department of Basic Course, Naval University of Engineering, Wuhan 430033, China
全文: PDF(2455 KB)   HTML
摘要: 

通过电化学测试、浸泡实验以及表面分析,研究了50%体积含量的W颗粒/Zr41.2Ti13.8 Cu12.5Ni10Be22.5基非晶复合材料在3% (质量分数) NaCl溶液中的腐蚀行为。结果表明:在3%NaCl溶液中,该复合材料表面由于W颗粒与非晶合金基体相的偶对效应而形成了局部腐蚀微电池,其中非晶基体部位作为局部阳极区其表面的腐蚀溶解加速,复合材料的腐蚀电流密度增大,其耐蚀性能明显低于Zr41.2Ti13.8Cu12.5Ni10Be22.5非晶合金。50%W颗粒的加入对该复合材料的耐点蚀性能基本没有影响,在3%NaCl溶液中基体非晶部位发生了均匀的腐蚀溶解,该非晶复合材料具有较好的耐点蚀性能。

关键词 非晶复合材料腐蚀行为电偶对耐点蚀性    
Abstract

The corrosion behavior of 50% (volume fraction) W particles/Zr41.2Ti13.8Cu12.5Ni10Be22.5 metallic glass matrix composite in 3% (mass fraction) NaCl solution was studied by electrochemical test, immersion test and surface analysis. The result showed that: in 3%NaCl solution, local corrosion microcells were formed on the surface of the composite due to the coupling effect of W particles and metallic glass matrix, the corrosion dissolution on the surface of metallic glass matrix is intensified as a local anodic zone, the corrosion current density of the composite increased, and the corrosion resistance of the composite is significantly lower than that of Zr41.2Ti13.8Cu12.5Ni10Be22.5 metallic glass. The incorporation of 50%W particles have no effect on the pitting resistance of the composite, the uniform corrosion dissolution occurs in the metallic glass site of the composite in 3%NaCl solution, and the composite has better pitting resistance.

Key wordsmetallic glass matrix composite    corrosion behavior    galvanic couple    pitting resistance
收稿日期: 2019-05-05     
ZTFLH:  TG174  
基金资助:国家自然科学基金(51575522)
通讯作者: 胡会娥     E-mail: huhuie_nue@163.com
Corresponding author: Huie HU     E-mail: huhuie_nue@163.com
作者简介: 苏小红,女,1980年生,博士生

引用本文:

苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
Xiaohong SU, Huie HU, Xiaodong KONG. Corrosion Behavior of W Particles/Zr41.2Ti13.8Cu12.5Ni10Be22.5 Metallic Glass Matrix Composite in 3%NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2020, 40(1): 70-74.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.225      或      https://www.jcscp.org/CN/Y2020/V40/I1/70

图1  两种材料在3%NaCl溶液中的开路电位随时间变化曲线
图2  两种材料的极化曲线图
MaterialBaBcIcorr / A·cm-2
W particles/Zr41.2Ti13.8Cu12.5Ni10Be22.5 metallic glass matrix composite1891074.38×10-6
Metallic glass Zr41.2Ti13.8Cu12.5Ni10Be22.51816956.41×10-7
表1  两种材料在3%NaCl溶液中的电化学数据
图3  两种材料的Nyquist图
图4  两种材料在3%NaCl溶液中浸泡21 d后的SEM形貌
图5  两种材料在3%NaCl溶液中浸泡21 d后的EDS分析
[1] Johnson W L. Bulk glass-forming metallic alloys: Science and technology [J]. MRS Bull., 1999, 24(10): 42
[2] Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta Mater., 2000, 48(1): 279
[3] Mato S, Alcalá G, Woodcock T G, et al. Corrosion behaviour of a Ti-base nanostructure-dendrite composite [J]. Electrochim. Acta, 2005, 50(12): 2461
[4] Qin X J. Corrosion resistance of Zr41.5Ti14Cu13Ni10Be22.5 bulk amorphous alloy [J]. Corros. Sci. Prot. Technol., 2003, 15(1): 52
[4] (秦秀娟. Zr41.5Ti14Cu13Ni10Be22.5大块非晶的耐蚀性能 [J]. 腐蚀科学与防护技术, 2003, 15(1): 52)
[5] Conner R D, Choi-Yim H, Johnson W L. Mechanical properties of Zr57Nb5Al10Cu15.4Ni12.6 metallic glass matrix particulate composites [J]. J. Mater. Res., 1999, 14(8): 3292
[6] Conner R D, Dandliker R B, Johnson W L. Mechanical properties of tungsten and steel fiber reinforced Zr41.25Ti13.75Cu12.5Ni10Be22.5 metallic glass matrix composites [J]. Acta Mater., 1998, 46(17): 6089
[7] Inoue A, Kimura H. High-strength aluminum alloys containing nanoquasicrystalline particles [J]. Mater. Sci. Eng., 2000, A286(1): 1
[8] Hays C C, Kim C P, Johnson W L. Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions [J]. Phys. Rev. Lett., 2000, 84(13): 2901
[9] Zhang Z F, He G, Zhang H, et al. Rotation mechanism of shear fracture induced by high plasticity in Ti-based nano-structured composites containing ductile dendrites [J]. Scr. Mater., 2005, 52(9): 945
[10] Srivastava A K, Das K, Toor S K, et al. Corrosion behavior of TiC and (Ti, W) C-reinforced Fe-17Mn and Fe-17Mn-3Al austenitic steel matrix in situ composites [J]. Metallogr., Microstruct., Anal., 2015, 4(5): 371
[11] Tiwari S, Balasubramaniam R, Gupta M. Corrosion behavior of SiC reinforced magnesium composites [J]. Corros. Sci., 2007, 49(2): 711
[12] Choi-Yim H, Conner R D, Szuecs F, et al. Quasistatic and dynamic deformation of tungsten reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass matrix composites [J]. Scr. Mater., 2001, 45(9): 1039
[13] Gostin P F, Sueptitz R, Gebert A, et al. Comparing the corrosion behaviour of Zr66/Ti66-Nb13Cu8Ni6.8Al6.2 bulk nanostructure-dendrite composites [J]. Intermetallics, 2008, 16(10): 1179
[14] Wang Y H, Yang Y S. Amorphous Metallic Alloys [M]. Beijing: Metallurgical Industry Press, 1989
[14] (王一禾, 杨鹰善. 非晶态合金 [M]. 北京: 冶金工业出版社, 1989)
[15] Liu G F, Li H F, Zheng J S, et al. Corrosion behavior of 55% Al-Zn coating in salt solution containing hydrogen sulfide [J]. Mater. Prot., 2002, 35(5): 13
[15] (刘根凡, 李华飞, 郑家燊等. 硫化氢盐水中55%Al-Zn镀层的腐蚀行为 [J]. 材料保护, 2002, 35(5): 13)
[16] Ma H J, Gu Y H, Liu S J, et al. Local corrosion behavior and model of micro-arc oxidation HA coating on AZ31 magnesium alloy [J]. Surf. Coat. Technol., 2017, 331: 179
[1] 李琳, 陈义庆, 高鹏, 艾芳芳, 钟彬, 伞宏宇, 杨颖. 除冰盐环境下桥梁钢的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[2] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[3] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[4] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[5] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[6] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[7] 王勤英,裴芮,西宇辰. 镍基激光熔覆层冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[8] 郭铁明,张延文,秦俊山,宋志涛,董建军,杨新龙,南雪丽. 桥梁钢Q345q在3种模拟大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 319-330.
[9] 黄博博,刘平,刘新宽,梅品修,陈小红. 新型HSn70-1铜网衣两年期海水腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[10] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[11] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[12] 张子阳,王善林,章恒瑜,柯黎明. AZ31镁合金搅拌摩擦焊接头腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(2): 117-125.
[13] 刘栓,周开河,方云辉,徐孝忠,江炯,郭小平,郑文茹,蒲吉斌,王立平. 环境因素对纯Zn在饱和Zn(OH)2溶液中腐蚀行为的影响I—Cl-浓度和pH值[J]. 中国腐蚀与防护学报, 2016, 36(6): 522-528.
[14] 周开河,方云辉,徐孝忠,江炯,郭小平,刘栓,郑文茹,蒲吉斌,王立平. 环境因素对纯Zn在饱和Zn(OH)2溶液中腐蚀行为的影响II—温度和溶解氧浓度[J]. 中国腐蚀与防护学报, 2016, 36(6): 529-534.
[15] 王子豪,黄运华,李佳,杨浪,谢冬寒. Nb对X80钢焊接热影响区在模拟海水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 604-610.